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P REFACE

The research reported in this volume began as an ambitious attempt to

quantify risks in offshore structures, in particular gravity platforms,

deriving from uncertainties in geotechnical bottom conditions and models of

foundation performance. The work has led to something different, for among

the early conclusions of the research were that  a! present reliability

analysis techniques and present statistical procedures for interpreting

geotechnical data are inadequate to quantify overall risks, and  b! many of

the uncertainties in offshore construction are inductive and not amenable to

quantified analysis. Argument against these conclusions is sure to be reg-

istered by those favoring subjective probability approaches, but for the

present work such procedures were not seriously investigated. This is not

to suggest these approaches to be inappropriate, only that the objectives

of the present work were directed at generic procedures for analyzing risk

and reliability, and not with the requirements of a particular project and

designer.

What has developed in the present work is an approach to the use

of reliability techniques in analyzing those aspects of the design of off-

shore facilities that are benefited by such analyses, and a generic analysis

of such uncertainties. The predictions of risk and reliability that result

are, of course, partial. They do not include such things as negligence and

gross error, or do they include modes of performance about which basic

mechanistic understanding is lacking. However, for the purposes of explora-

tion, design and regulation they provide quantified analyses that allow

partial optimizations and rational bases for decisions.

The results of this work, therefore, do not fulfill all the original

objectives, because certain of these in hindsight were not fulfillable.



p f course, this too is a conclusion. However, current techniques o f risk and

reliability analysis provide a strong analytical framework for dealing ration-

ally with many uncertainties of offshore design. This report presents those

capabilities, and summarizes data and analyses supporting this conclusion.

This report is a summary of work carried out between August 1977 and

August 1979, under funding by MZT Project Seagrant.
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1. INTRODUCTION

As with any engineering project, offshore facilities inevitably involve

risks and are designed in the face of uncertainties. The recent surge in

offshore development, particularly the move to deeper waters and more

hostile environments, has led to a situation with even larger uncertainties

than those of onshore counterparts. These uncertainties arise from environ-

mental loadings  e.g., storm wave and earthquake!, from inadequately under-

stood physical mechanisms  e.g., structural and soil response!, and from in-

sufficient data to precisely characterize offshore sites  e.g., bottom param-

eter or storm recurrence rates! .

These uncertaintieS are nOrmally dealt with by designing for adequately

high factors of safety against chosen design loads. This is done to assure

that the available resistance of a structure is subtantially greater than the

loads it normally experiences, and also higher than the extraordinary loads

which may occur in the life of the structure. However, because the loads

actually to be experienced by the structure as well as the structural and

foundation response to those loads are known only imperfectly, no matter how

high the design factor of safety some probability remains that realized

loads will exceed realized resistance, leading to partial damage or total

collapse of the facility. The consequent costs of such failures can exceed

the immediate structural damage, through oil spillage, other environmental

impact, loss of service of the facility, and in certain cases human injury

or death.

The questions, then, are what is the magnitude of this probability of

damage or collapse, what are the significant sources of uncertainty, and

what is the marginal cost of reducing risk? The work reported here deals





specifically with geotechnical sources of risk. That is, with the principle

sources of uncertainty affecting predictions of foundation perfonnance, and

with the aggregate uncertainty they lead to. To limit the bzeadth of coverage,

the work has focused on gravity-type platforms, founded on the ocean bottom,

held in place by their weight. Sevezal types of gravity platforms in place

or under construction are shown in Figure 1.1. While many offshore plat-

forms are not of this type, being founded rather on driven piles, much of

the present work applies to them as well.

The evolution of offshore construction has progressed rapidly. Begin-

ning as extensions of nearby on shore facilities, offshore towers have now

been placed in over 300 m of water. While the early decades of offshore

development, particularly in the Gulf of Mexico, proceeded at a moderate

rate into deeper waters, the last decade has seen a tripling of the depths in

which structures have been placed  Figure 1.2!. This means that the long

history of empirical validation and trial and ezror design which normally

characterize geotechnical engineering are missing in much offshore work.

The problem is, of course, compounded by new development in environments

such as the North Sea, Alaska, and potentially the Antarctic. This means

that much of the new design is based on modeling, usually numerical, and on

extrapolation from sparse data bases.

The problem of risk offshore is complicated by the design philosophy

of many owners and constructors of offshore platforms. Given the commercial

nature of these ventures and limited design lives, there is understandably

little incentive for the highly conservative design practice common in other

large civil projects, for example, dams or bridges. Offshore facilities tend

to be designed with an attempt to rationally balance financial risk of

failure against marginal design modifications.
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Nevertheless, the historical performance of off shore facilities

has been fairly good. There have been no substantial failures of major

gravity platforms, and the record of failures for pile supported

platforms is shown in Figure 1.3. However, the historical record for

the former is only slightly more than 10 years, with the total

numbers of such towers increasing geometrically as time goes on.

In United States waters, platform design has been performed primarily

in accordance with the recommended guidelines of the American Petroleum

Institute  API Rp ZA, 1978!, and more recently of the American Concrete

Institute. The API guides are essentially extensions of American Institute

f' or Steel Construction design rules  AISC, l970!, modifided by offshore

experience. The ACI guides are new design rules based heavily on the perfor-

mance of structures in the North Sea, more of which are concrete than in the

Gulf of Mexico and other shallow regions. Neither of these codes has the

strength of law, and the U.S. Federal Government through the Department of

Interior and Department of Energy is now taking a more active stance in

regulating offshore construction. Recommended guides like those of the API

and ACI have also been proposed in other countries, for example, by Det Nozsk

Veritas and Fbdh'ration Internationale de la Prdcontrainte  FIP!

ORGANIZATION OF REPORT

This main part of the report is organized in five broad chapters

 Figure 1.4! . The first presents an overview of the sources of geotechnical

uncertainty in offshore structures, previous quantitative analysis of those

uncertainties, and the philosophy of forrnal methods in geotechnical reliability

analysis. The second and third examine the basic uncertain variables, dealing

with environmental loads and load effects, and with site characterization and

parameter estimates, respectively. Chapter 5 is an extended discussion of
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Figure 2. 4 -- Ozgani sation of Repoz t.
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the problem of modeling foundation performance, and the uncertainties of

that undertaking. Finally, Chapter 6 considers the aggregation of these

uncertainties into overall estimates of risk and reliability.

To illustrate the analyses and methods developed in the course of

the work, a specific site on the southern flank of Georges Bank has been

chosen for discussion  Figure 4.12!. This site had been studied earlier by

Laszlo �976!, and was chosen for its location offshore New England, the

availability of data, and its inclusion in potentially developable tracts

 Bureau of land Management, 1976!. Specific information on the site has been

introduced as needed throughout the report.
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2. RISK ANALYSIS OF OFFSHORE STRUCTURES

Offshore structures are designed to withstand loadings they may exper-

ience during their design life. That design is aimed at ensuring that for

all mechanisms of failure that a structure may experience, the available re-

sistance to failure exceeds the realized loads. No matter how detailed the

process of modeling and design, and no matter how sophisticated the analysis

of empirical data or performance, design remains an inductive task. Risk

analysis, too, remains an inductive task. The methods of risk analysis,

like other methods of engineering science, are tools for aiding human judg-

ment and do not replace it.

2.l Risk Analysis

Risk analysis techniques are in many ways accounting schemes. The

purpose of these techniques is to maintain logical  i.e., deductive! consis-

tency among empirical observations, physical theory, and engineering opinion

in drawing conclusions about the performance of a facility. This is not an

unimportant task or one that is otherwise easily accomplished, despite

common wisdom. A Large literature on the analysis of uncertainties and

human decision making attests to the difficulties of intuitively dealing

with, let alone aggregating uncertainties  Hogarth, L975!. Geotechnical
I

engineering is no exception  Nordquist, l979!.

Given this task, risk analysis must be a logically structured, consis-

tent, explicit format for combining information from all available sources

and deducing conclusions which follow objectively within that format. The

format itself, however, incorporating a number of assumptions and sources of

information can never be said to be wholly objective.



Criteria against which risk analyses must be based are  e.g., Latai,

1977!:

1! The results must be useable. The answers provided to questions

must be both important and zelevant to decisions that have to be taken.

2! The analyses must reflect pzofound understanding of the systems

being studied The questions answered must be clear and their an-

swers, to the extent possible, complete.

3! The analyses must be replicable Independent groups analyzing the

the same systems with the same method must arrive at nearly the same

results.

These cziteria are not easily satisfied, and much of what now passes for

risk analysis in civil construction only partially achieves these goals,

The basic procedure for risk analysis consists of four steps;

Enumerate failure modes or "limiting states."

II. Select physical theories and develop models far predicting

the interaction of events and processes.

IXI. Estimate probabilities associated with events, processes, and

series of events and processes.

IV. Establish measures for the consequences of failures.

To do these four things, the problem being analyzed must be very well under-

stood. The ways in which the system can fail must be describable and the

consequences of failure must be identifiable. The problem must also be well

structured. The task of completing steps I through IV is almost entirely

inductive. The risk analysis itself only provides a reference for organizing

the results and combining them to draw consistent conclusions.
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stratification of sediments

Figure 2.1 -- Typical Profile view of offshore gravity platform
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2.1.1 Enumerating Failure Modes

The common objection to risk analysis is that there is no way to account

for omissions � failure modes unthought of, or event dependencies overlooked.

This is true of risk analyses as of any other engineering analysis. The

resulting quantifications of risk are always conditional on the modeling

assumptions introduced and are therefore quasi lower bounds. This is not

a limitation of risk analysis, per se, but of deductive logic generally.

As opposed to many man-made systems like electronics, foundations for

offshore structures are "open" systems. That is, they exist within a larger

environment and possess an essentially infinite number of potential failure

modes. Most of these cannot be enumerated, and thus the set of modes

analyzed is never exhaustive. The modes of failure chosen for analysis are

those thought tc be important  Figure 2. 2!, but, they can only be identif ied by  i! the

experience of a failure,  ii! constructing and operating on a model to

deduce mechanisms of failure  within the context of the model!, or  iii!

intuitive reasoning. There is no way of insuring that an important mechan-

ism of failure has not been omitted. Zn onshore practice, this situation,

in combination with the difficulty of modeling certain behaviors, has led

to the well known "observational approach." This approach has more limited

application offshore .

2.1.2 Estimating Probabilities

The estimation of probabilities requires that events, processes, and

parameters be precisely defined. Such definitions are not innate, but

depend on the use to which the probabilities are to be put. In this case

they depend on the models of site conditions and foundation behavior adopted.

Parameters, even those purported to quantify physical properties like un-

drained strength, are only partly innate. In large measure they are
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artifacts of and inseparable from the geotechnical models they are used in

 e.g., Lambe, 1973; Baecher, 1979a!.

Although ostensibly based on in situ information and historical data,

behind the facade of geotechnical and oceanographic technology parameter

estimates are highly subjective  Baecher, 1978! . The amount of site informa-

tion is insufficient to precisely define spatial properties of the sub-

bottom, and often allows only the first few moments of spatial or temporal

averages to be calculated. Just as for failure modes, geologic or hydro-

graphic anomalies must be conceived of before their probabilities of existing

can be calculated. Section 4 covers these points in greater detail.

2.1 3 Establishing Consequences

Just as for failure modes, establishing consequences is an inductive

problem in that fram the essentially infinite number of effects caused by

adverse behavior of a structure only a limited number are selected as

important for analysis. Those that are unthought of, naturally, are not

weighted in making decisions.

For the purpose of design-decision in civil construction, consequences

are commonly divided into three classes: financial, environmental and

social, which in turn are suMivided in a tree-like hierarchy until a set

of objectives is obtained that either cannot be further suMiyided or is

operational at its level of detail. This set of subobjectives should be

complete, in that it includes all consequences that bear on a decision;

and clear, in that each subobjective has unambiguous meaning.

To each subobjective some scale of measurement must be assigned,

which in current usage are normally termed 'attributes'. An attribute

should be comprehensive in that important differences in the degree to which
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a subobjective is achieved are reflected in numerical changes in the attri-

butes, and vice versa. However, an attribute must also be useable, in

that measurement along it is possible; and understandable in that its

values carry meaning to the analyst or designer. Thus, appropriate attr i-

butes are often difficult to define, and are often only partial correlates

to the consequences or subobjectives one actually wishes to measure.

Perhaps the central problem in developing an objective function for

risk analysis is combining "non-commensurate" consequences into a scalar

measure to be compared across design alternatives. A number of approaches

have evolved during the past twenty years  e.g., Zelan, 1973; Keeney and

buffa, l975!, but several practical problems remain. These problems were

seen as outside the scope of the present study, however, and are not further

addressed.

Most work to date on reliability analysis for offshore structures

has used the single dimension of financial cost for an objective function,

and minimizing expected cost as the criterion of optimality. Little work

seems to have been done on risk aversion, although one � dimensional utility

theory seems an obvious vehicle in future applications.

2.2 Sources of Uncertainty

Geotechnical engineers in the course of their work are forced to deal

with uncertainties seldom tolerated in most branches ofcivil engineering

Unlike man-made materials, soil and rock masses are naturally variable and

little information is available with which to characterize them. Properties

measured in the laboratory may only approximately apply to in situ conditions,

and the mathematical models which most branches of engineering rely upon

are in geotechnical engineering rather poor.



2.2.1 Uncertainties Offshore

A schematic overview of the uncertainties entering risk analyses for

offshore structures is shown in Figure 2.4. As a first approximation they

are divided between loads and load effects on the one side, and foundation

response  resistance! on the other.

Along the load side one begins with some historical record of environ-

mental conditions, e.g., observed wave heights, wind speeds, seismic

accelerations, etc. From these a recurrence model is postulated and

statistical techniques used to infer parameter values. Then a load effects

 load transfer! model is assumed, its parameters estimated from testing or

theory, and the recurrence of environmental conditions propagated through

to obtain the recurrence of foundation loads,

Along the foundation response side one begins with general geological

data and direct or indirect measurements at a proposed site. Some model

of physical response is postulated to transform these measurements into

mechanical properties of the bottom sediments, and then a general conception

of the local geology is used as a background against which to construct

a characterization of the site for design. Fram this characterization

engineering properties are estimated for use in analysis and design.

The two streams of analyses are brought together in a geomechanical

model s! of the proposed structure and its foundation  Figure 2.5!. This

model is a simplified view of the real physical processes at work, chosen

to display the important interrelational properties among events and objects

of an adopted theory, to which in turn reality is thought to conform For

such predictions as general stability against static strength failure and

deformation under induced stresses, well developed theories and associated
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models exist. For other predictions, such as liquefaction of cohesionless

sediments under cyclic loading, theoretical understanding is poor and

widely accepted models do not exist

From the calculations a combined risk profile is predicted which is

a quantification of those contributions to risk that can be directly

analyzed. To these must be added professional uncertainties and judgment

about modes of behavior that cannot be directly analyzed, to reach a final

summary of risk of adverse performances. For design decisions this final

summary must be combined with some objective function to determine actions

that are in some sense optimal.

2.2.2 Types of Uncertainty

This outline illustrates types of uncertainties associated with geo-

technical engineering. Formal analysis cannot treat all of them, and

must approach those it does treat in different ways, possibly using differ-

ent techniques. As such, formal analysis is an aid to experienced judgment,

and should be used only when it will provide insight or help maintain

logical consistency among analyses

A separation will be maintained between inductive, deductive, and

inferential uncertainties. Usually, uncertainties are separated merely

between inductive and deductive, but the inclusion of inferential uncertain-

ty as a separate class is convenient.

Induciide uncertainties are traditionally said to involve movement

from the specific to the general. From observations on a finite number of

realizations of' some process one is led to general conclusions on the pro-

cess itself. Inductive reasoning is usually associated with the formation
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of scientific theories, as for example, postulating the theory of effective

stress from laboratory experiment but it is also the reasoning leading

to the development of a geological concept of a site from borings, geo-

physics and geomorphology. Whether peat lenses are suspected in a coastal

profile and therefore searched for is a matter cf inductive reasoning.

LtduotiVe uncertainties are generally said to be those moving from

the general to the specific. From knowledge of the mechanisms underlying

some process and estimates of the parameters of the process, specific out-

comes or realizations are predicted  deduced! . If the logical steps are

correctly followed, the conclusions follow objectively from the premises.

Deductive reasoning is usually associated with mathematical logic, for

example using the theory of effective stress to predict consolidation

behavior, but it is also the reasoning leading to a predictions of FS from

models and parameter estimates. Predicting the chance of finding a peat

lens of assumed size and shape at a site is a matter of deductive reasoning.

ZnfeWnHal uncertainties are generally thought of as those in

estimating designed properties or parameters from a limited number of

observations. They are somewhat similar to inductive uncertainties, and

some authors group the two together. Inferential uncertainty is usually

associated with statistical reasoning, as for example, in estimating

strength parameters from experiments. In this example, the assumption of

homogeneity and modes of failure to be analyzed would be inductive, the

estimation of parameters from borings and tests inferential, and the

predictions of a FS from the model and parameter estimates deductive.

Returning to the previous outline, the roles of these types of uncer-

tainties can be seen. Deciding what problems to analyze, selecting
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theories to apply, and hypothesizing the overall geological conditions are

inductive problems. If one is to believe Hume, these problems cannot be

made logical. They involve generating hypotheses and assigning initial

degrees of confirmation to those hypotheses, and these are not logical

undertakings. They are also not illogical; rather one might call them

'alogical'  e.g., Salmon, 1964! . The point is, these uncertainties cannot

be formally analyzed. They are the starting point from which analyses of

uncertainty must begin. For example, to predict the chance that signifi-

cant liquefaction will occur in sand profile, one must induce theories

explaining liquefaction and develop logical relations  models! for combining

field evidence at a particular site. Predicting liquefaction in absence

of a theory cannot be done formally, expect by adopting the hypothesis that

it is a totally random phenomenon, and extrapolating the historical fre-

quency. But, even then an inductive leap of faith is being taken.

Predicting bearing capacity from Terzaghi's superposition involves

deductive uncertainty. A model is available, parameters estimates are

available, and a prediction is mathematically deduced. Uncertainty in the

parameters c' and $' is propagated through the model, and possibly uncer-

tainty in N !, and finally a statement of deductive uncertainty in
Y

the predicted bearing capacity results. However, this uncertainty is con-

ditioned on a number of strong assumptions. For example, a sand stratum

may be assumed homogeneous, the theory upon which the model is based is

assumed to hold, as well as other things. Since there is uncertainty in

all of these conditioning assumptions, the deductive uncertainty is only

partial � although one cannot definitely declare it a lower bound.
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Estimating c', Q' parameters, permeabilities, and the like is

inferential. Prom a limited number of observations the parameters are

estimated, usually statistically. In principle, the inferential uncertainty

can be reduced arbitrarily close to zero by increasing the sample size,

but this is not actually the case. Actually, bias errors enter the

problem of inference, and these bias errors must usually be identified

inductively.

Formal methods of analysis can be brought to bear on deductive and

inferential uncertainties, but not on inductive uncertainties. One cannot

ask that reliability techniques and statistical theory answer questions that

cannot be formally answered. These may be the questions one most wants

answered -- what is the chance we' ve omitted some important failure mode,

missed some important subsurface condition; or made a mistake -- but they

can only be dealt with by conservatism and robustness of design.

2.2.3 Taxonomy of Geotechnical Uncertainties

The outline above also illustrates a number of specific uncertainties

common to geotechnical problems.

First, the geological subsurface is spatially variable. Sometimes

this variation is called inherent or natural randomness, but for reasons

discussed below these terms are misleading. The subsurface is spatially

variable in that it is composed of different materials which are stratified,

truncated, and in other ways separated in discrete bodies. It is also

spatially variable in that within an apparently homogeneous body, material

properties vary from point to point. With sufficiently many observations

spatial variation can be characterized to any arbitrary level of precision.



With an infinite number of observations the variation could be known exactly.

Obviously, however, the number of observations is limited by cost and time,

so uncertainty remains about material properties and classification at

points not observed. In reliability analysis these are often represented

by stochastic processes.

Second, because the number of measurements at a site is limited there

is inferential or 86ztistica2 urh'.eAain0p in the engineering properties and

model parameters used in analyses. Measurements vary from specimen to

specimen or boring to boring because the in situ properties are spatially

variable and because the act of measuring itself introduces errors. As

sample sizes  numbers of observations! increase the precision with which

parameters can be estimated increases, and further, the relationship

between sample sizes and estimate precision can often be expressed rnathe-

matically. In principle, statistical uncertainties can also be reduced to

any arbitrary level by increasing the number of observations.

Third, most testing procedures in geotechnical engineering introduce

bias er'st'8 in addition to random error. That is, systematic differences

between measured and actual properties usually exist. Ladd �977! de-

scribes a number of these in soil property measurement. Bias error cannot

be reduced by repeated testing and cannot be inferred by logical deduction

from the results of a testing program. However, biases can be inferred

from comparisons of predicted and observed performance, but as with

Bjerrum's �963! field vane strength correction, the bias so inferred comes

from all sources in the analysis  i.e., from measurement techniques,

mechanical models, definitions of failure, and the like! . These bias

calibrations cannot always be transferred to new applications without

complete revision.
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Fourth, theories and simplifications ae required to predict per-

formance from property measurements and these introduce modeling unae2'taint@.

Model uncertainty is generated because there are uncertainties over the

theory assumed to apply to the physical process being studied, there are

uncertainties in the structural relations adopted within the model,

there are boundary and initial conditions chosen, and there are errors

introduced by numerical or mathematical approximations. Model uncertainty

in geotechnical analyses is widely thought to be large  e.g., deMcllo,

l979!, and is often used as an argument foz' not using formal methods in

the analysis of uncertainty. This view seems somewhat inconsistent with

itself, but is returned to below.

Fifth, one never knows -- and epistomogically, can never know--

what has been left out of an analysis. That is, there is uncertainty due

to omissions. Any analysis is partial. The zeal world has properties

and interrelationships that can never entirely be included in an engineer-

ing analysis. The question is whether these things left out of the analysis

are important. This is the same foz probabilistic and deterministic

analyses. Unless conditions are hypothesized, they cannot be included in

predictions. Many of the major failures of constructed facilities are

due to omissions. For example, Malpasset Dam, Tacoma Narrows Bridge,

Vijont Reservoir.

Last, while this report concentrates on geotechnical uncertainties,

the external loads aM oonChtions to which a structure is subject are also

uncertain. These are uncertainties in addition to the first five, and in

problems like seismic safety can occupy a significant place in the total

uncertainty.
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2.3 Previous Work on Offshore Risk

The amount of previous work on geotechnical reliability of offshore

structures is limited. This reflects more the state of geotechnical reliability

analysis in its entirety than the advancement of offshore geotechnics. For

example, the recent report of the ASCE Committee on Reliability of Offshore

Structures �979! concluded that  p. 15! "Offshore geotechnical problems

appear to be well suited for reliability technology due to the natural

vagarities of soil deposits, the variability of field and laboratory tests,

and the uncertainties involved in the analysis of soil and foundation be-

havior in offshore environments. At the present time design and analysis are

both fundamentally deterministic, .... Probabilistic methods have just

begun to be applied to offshore geotechnical problems."

Much of the work in geotechnical  and. structural! reliability analysis

for onshore facilities is applicable offshore, and is reviewed as needed in

other parts of this report. Here, only that work expressly devoted to off-

shore structures is reviewed.

Early work on offshore reliability analysis, primarily of structural

systems but also of pile performance, was presented by Marshall �969! in a

paper which remains useful. Marshall's interest in the 1969 paper was

primarily pile supported structures in the Gulf of Mexico. He divided the

structural response of these platforms into three subcomponents -- the struc-

tural frame, axially loaded piles, and laterally loaded piles -- and pre-

sented distributional information on each  Figure 2 6!. However, no attempt

was made to combine these into probabilities of system resistance. Uncer-

tainty in wave loading for a given wave height was expressed by a probability

distribution over the ratio of actual  i.e., measured! load to predicted

load for given waves heights, measured on platforms exposed to Hurricane Carla..
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For a given wave loading the system probability of failure was taken as the

sum of the three component probabilities. The return period wave and factor

of safety for design were optimized using expected financial cost-assuming

total failures. Philosophically, the approach owes much to the earlier work

of Freudenthal �956! and Borgman �963!. An upperbound. on the total prob-

ability is taken to be the sum of the individual failure mode probabilities,

implicitly recognizing the possible correlation among uncertainties in the

FS's for different modes. However, no method is developed for other estimates.

A schematic of the general design philosophy is shown in Figure 2.9.

Marshall's work seems to have led directly to later work by Bea  e.g.,

1973, 1975! and probably influenced the work of Stahl. Bea's main concern

in his published work has been the selection of environmental criteria for

platform design, that is, design waves, storms, earthquakes, winds, etc.

Like Marshall, Bea has considered lumped parameter analyses and specified

probability distributions over ratios of actual to predicted strength of

structural or foundation elements, and actual to predicted loads from waves

or earthquakes  Ficfure 2.6!. Qtimizationis by minimizing expected cost consider-

ing only total failur'e on the risk side  Figure 2.7! .

Stahl has concentrated on the structural reliability of steel plat-

forms in an approach very much like Freudenthal's. This work has been

reported in a series of papers �974, 1976, 1977!. Probability distributions

are specified on load parameters and on resistances and the probabilities of

loads exceeding resistances calculated. These analyses primarily deal with

individual structural elements under simple loadings, and little attention

is directed to foundation response. Stahl has strongly supported a risk

analysis approach to design decision and has proposed that a balancing of
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design and fabrication cost against expected losses due to failure be used

in design. These ideas are strongly reflected in the ASCE committee report

�979! .

Nore recent work in offshore reliability has been undertaken by Moses

 l979 a, b!, under support of Amoco. This work is a departure from that of

Marshall, Bea, and the early work of Stahl. However, Stahl has had direct

influence on this work.

Moses' approach is Bayesian, and consists of two parts. The first is

an analysis of the structural system making up a platform. This is a second-

moment analysis based on the means and variances of element resistances.

The second is an empirical calibration of the reliability predictions against

observed survivals and failures. This is based on Bayesian inference, and up-

dates estimates of load and resistance correction factors. This work is

mostly theoretical, and in principle is not limited in application to off-

shore structures.

Others who have contributed to the structural reliability analysis of

offshore structures include Flint and Baker �976!, who take a somewhat broader

view of risk analysis, and who apply so-called level II methods of reliability

theory  Flint, et. al., 1976!, Fjeld �978!, and Moan �979! .

At the same time Bea and Stahl were presenting application of reliabil-

ity methods to primarily structural aspects of offshore platforms, Kraft.

was working on reliability aspects of platform foundations. His work was

presented in a series of papers  e.g., Kraft and Murph, 1975; Focht and

Kraft, 1977!, which while similar in spirit to the earlier structural

work, is different in application. Kraft's work derives from a background

in geotechnical reliability  e.g., 1968!, and is not simply a transfer of

technology in structural reliability.
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Kraft considers specific modes of failure and attempts to develop

second-moment information on the distribution of safety factors for each.

Uncertainties in the analyses are primarily attributable to uncertainties in

soil properties, geotechnical models, and imposed loads. On the resistance

side these uncertainties are handled by a series of mutually independent

random correction factors  Table 2.1!. This procedure is similar to that

suggested by Yuceman �974! for reliability analysis of slopes.

The probability of failure is computed assuming ZS to be log Normally

distributed, and the contention maintained that for probabilities of failure

-2 -4in the range 10 < p < 10 the sensitivity to distribution shape is

slight.

Nore recently, H8eg and Tang �978! have published a statistical

a.nalysis of site characterization data for North Sea structures, and a

reliability model for skirt penetration. This work is divorced from the

earlier structural reliability work, and like Kraft's work is entirely

devoted to geotechnical problems. The analysis considers uncertainty in

bottom parameters, although does not formally evaluate them statistically,

and uses second-moment reliability analyses. For stability analysis the

uncertainty in nominal factor of safety is computed using random correction

factors  Table 2.2!, but deformation uncertainties are not considered. The

authors do note, however, that Bayesian inference can be applied to cali-

brating the reliability model for survivals  and implicitly failures! .
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Table 2.1. From Kraf t and Ãurff �975!

C.O. V.Expected Value

Disturbance deuto stress

release in sampling 0.031.05

0.11Technical disturbance 1.50

Soil anisotropy--bearing
--sliding

0.03

0. 14
0.90

0.80

0 02Shearing rate

Cyclic loads

Strain softening

Xn-situ stress

1.10

0.100.70

0.020.95

1.05

0.001.00Fissures

0.12Bearing

Sliding

l. 55

0.210.97

Random Correction Factors for Predicting Factors of
Saf~et for Geotechnical Performance
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Table 2.2: from Hoeg and Tang
�978!

COVMeanFactor

0.03Model uncertainty

Cyclic loading

Conductor effect

1.0

0.031.05

0.011.01

0.010.98Erosion effect

0.0251.0Depth of embedment

Load factor 0.23

0.22Undrained strength+

CPT only CPT a Lab«Undreined Sheer ~Siren th

Spatial variability

Insuf f icient samples

Calibration of CPT to laboratory

Laboratory compared to field

TOTAL

0.030.03

0.040.03

0.20

0.21 0.21

0.29 0.22

Random Correction Factors for Stability Analysis
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2.4 Present State of Offshore Geotechnical Reliability Analysis

From this brief review of previous work on risk and reliability analyses

of offshore structures it seems clear that the development and application

of such techniques is in its infancy. To date, most of the very difficult

problems of infering bottom conditions and assessing the uncertainties of

geotechnical predictions have not been addressed. This reflects primarily

the state of general geotechnical reliability analysis and not merely its

application to offshore structures. If anything, the offshore industry is

a spearhead of this work. The primary limitations of previous work have

been neglect of spatial variation in bottom conditions, simplistic analysis

of modeling uncertainty, and lack of attention to system behavior of offshore

foundations. It would be overly ambitious to suggest that these difficulties

can be quickly overcome, but significant contributions to the problem of

quantifying offshore risks are within grasp.



3. EHVIRONHENTAL LOADS

Reliability analysts must always concern themselves not only with

uncertainties in resistance and response but alsa with unposed loads.

For offshore structures the most important uncertainties in loads are tha..e

due ta loads imposed by the environment, namely= wind, hurricanes, and

tornadoes; waves, currents, and tides; earthquakes, and tsunamis; accidental

loads; and in special cases, ice. No attempts were made in the current

research to further the state-of-the-art of quantifying uncertainties in

environmental loads, or of predicting their expected values. However, to

assess the relative importance of geotechnical uncertainties to overall re-

liability an appreciation was needed of how large other contributors to

overall uncertainty are.

This section summarizes current levels of uncertainty in predictions

of environmental loads, concentrating attention on the most important of

these � wave loading. The discussion is based on methads of analysis used

in practice rather than emerging techniques in the literature, because

first, these are the ways loads are forecast, and second, the empirical

accuracy and precision of emerging techniques has yet to be verified.

Uncertainties in forecasting loads on an offshore structure may be

grouped in three classes. First, there are those uncertainties arising

out of the stochastic models used to characterize wave heights, wind speeds,

earthquake ground motion, or other physical processes. From such models

one arrives at an expression of annual or design life exceedance probabili-

ties, autocorrelations of magnitudes in time or space  e.g., wave height!

and crass correlations  e.g., of wave height and period! . Within the

chosen modeling these uncertainties are taken to be "natural," and can
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normally be calculated once a set of model parameters have been specified.

Second, there are uncertainties arising out of the statistical esti-

mation of the parameters of the stochastic models. These statistical

uncertainties reflect the finite historical record of observations of the

physical processes and associated sampling variation. They may also re-

fleet the uncertainty inherent in extrapolating observations made in one

as

f  s! = D f s [ x! f x~8! f e!dxdB
ex

�. l!

geographical location to predictions at' another. These latter uncer-

tainties, however, are not necessarily within the realm of traditional

statistical procedures.

Third., there are uncertainties in translating physical occurrences

to imposed loads. These uncertainties are usually said to involve the

transfer function, e.g., in calculating wave loads from wave heights and

periods. These uncertainties have to do with the models developed for re-

lating environmental phenomena to load effects, and with the accuracy and

precision with which the parameters of such models are known for a specific

candidate design.

These three sources of uncertainty combine to yield the overall

uncertainty in load predictions. As discussed in more detail below, in the

present work this synthesis was made using two methods: Bayesian predictive

distributions and propagation of variance techniques  e.g., first-order

second-moment analysis, FOSle!. The Bayesian technique uses the whole prob-

ability relation to calculate the predictive distribution on load parameters
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where f e! denotes the pdf, s the load parameter, x the natural phenomenon,

and 9 the parameters of the stochastic model of x. The FOSN technique uses

the second-moment relations of means and variances based on Taylor series

expansions of the relations among variables.

3.1 Stochastic Occurrence Modeling

In modeling sea states and subsequently the occurrence of wave

loadings it is convenient to distinguish between long and short term

descriptions. Long term descriptions are those summarizing storm occur-

rences and parameters, typically as discrete or point processes in time;

while short term descriptions are those based on stationarity assumptions

conditioned on the sea-state parameters of the Iong term descriptions.

For the purposes of geotechnical modeling long term descriptions are

typically the basis for predicting design life load exceedance probabilities,

whereas short term descriptions are typically the basis for predicting

dynamic response  e.g., development of excess pore pressures, cyclic

strain softening!.

3 1.1 Long Term Description

The data base upon which long term descriptions of the sea state

rest comprise three types of information: 1! visual observations, 2!

instrumental observations, and 3! hindcasts. visual observations normally

exist over a longer time period than do instrumental observations, but

the bias and random errors of these observations  i.e., measurement cali-

bration! are not known. Instrumental observations usually exist for only

short time histories, and therefore their statistical uncertainty can be

large. Hindcasts, made by combining historical storm wind speeds with a
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theory of wind generated waves, provides a long historical record  of

storm waves!, but carries large calibration errors  Marshall and Bea �976!

estimate a bias of 0.8 and a c.o.v. of 30%! .

It has been common to summarize long term variation of the sea state

in the single parameter, characteristic wave height H . This might be a
c

visually estimated height or some statistical measure like significant

wave height H . More recent work, however, tends toward a description
s

using a characteristic wave height, average mean period T and principle

wave direction B. Within this model the parameters  H ,T,B! exist for
c

every instant in time, and the instantaneous pdf is

f  H,T, B! = f  H   B! f  T!H,e!f  e! �.2!

base.

Given that the exceedance probabilities are sma11, the distribution

of number of exceedances of some extreme sea state H is commonly taken to

be Poisson distributed with mean X H! per unit time t,

The pdf f  H ! B! has been suggested to be best: modelled by Weibull,
c

Normal, or Gumbel Type I distribution, and in studies within which H and
c

T are assumed independent the marginal distribution on T is often also

taken to be Weibu11, Normal, or Gurnbel Type I. Little work appears to have

been done on dependence of H and T in long term descriptions.
c

For design, particularly of the foundation, the probability of en-

countering extreme sea states in specified periods of time  e.g., design

life! is of interest. By design these probabilities are necessarily small,

and predictions must be extrapolated sometimes far from the existing data
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p  n I A   ! 't! = � exp  -X  H! t!  A  H! t!1 n

n!
�.3!

must be estimated from historical data and given the rarity of occurren-e

can contain significant statistical error.

To overcame this error some assumption or reference period must be

taken by which to extrapolate observations of smaller H up to the higher
c

values of H. The most common of these  e.g., Thorn, l971! is to assume

some distributional form for the maximum H per year, and then to use extreme
c

value theory to extrapolate. Tham uses a Gumbel type I  i.e., double expa-

nental! type distribution for the distribution of annual peak H . From thj s
c

a distribution of exceedance probabilities of given H in specified time

periods is calculated. For the purposes of calculating reliability under

a load, this distribution of exceedance probabilities suffices, unless

cumulative effects of multiple storms are considered important.

The statistical uncertainty in estimates of exceedance probabilities

based on the largest annual wave approach can be calculated directly from

the sampling properties of, e.g., the double exponential distribution.

As discussed by Kimball  in Gumbel, 1958! the likelihood function for

double exponential sampling cannot be factored into a kernal and therefore

an analytical maximum likelihood estimator and a natural conjugate for

Bayesian updating are not available. Nevertheless, from a frequentist view

iterative and approximate sampling variances and distributions are available,

and from a Bayesian view direct enumeration is always possible.

A convenient result due to Kimball is an approximate solution for the

sampling variation of H , the wave height with �-p! exceedance probability
P

for the maximum likelihood estimate of the distribution parameters. Let



the double exponential pdf of maximum wave height H be

-a H-u! -exp -a H-u!!
f H! = ae e

with maximum likelihood estimators of u,u found iteratively from the

expressions

au -aH
e Z e i �.5!

P'
-aH.

ZHe i
i 1 1+ � = � Z H'

8 N J �.6!-aH. 1

with N, the sample size; and �/N! ZH., the mean annual observed maximum
i

wave height. Then the sampling distribution of H is asymptotically Normal
P

with variance

2 [1+ �-y+y! / m 6! ]
2 2

H A
p Na

�.7!

where y = a H-u! and y is Euler's Constant �.5772156...! .

3.1.2 Short Term Description

Short term descriptions of . states normally assume the water sur-

face elevation to be a realization from a stationary  in time!, homogeneous

 in space! Gaussian random field, the defining parameters of which depend

on the long-term description. Specification of the field requires joint

pdf 's of theelevations at arbitrary numbers of locations  in time and space!,

which for the stationary, homogeneous Gaussian case are sufficiently sum-

marized in the mean  assumed zero! and autocovariance function. Usually,
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Wave Heights

Considering the water surface to be a Gaussian random field leads

immediately to solutions for the probability distribution of wave height,

exceedance probabilities as functions of time, and other important pre-

dictions for assessing potential loads on an offshore structure. These

results are well known and have been in the literature for 30 years  e.g.,

Rice, 1944; Longuet-Higgins, 1957; Cartwright and Longuet-Higgins, 1956! .

For a stationary Gaussian one-dimensional process H t! and an arbi-

trary level h the probability of one upcrossing in time interval h t has

been shown by Rice �944! to be

Prin=ljbtj =  m /m ! expi-h /2m !St + o�t!!2

2 0 0
�. 8!

where m is the k moment of the spectral density function of the processth

f  a! defined over frequency

m = f u! f ~�o,
k k

0

�.9!

-1
and o�t! is a term of order ht . Thus the expected number of

upcrossinqs per unit time A h! becomes

A h! =  m /m ! exp f -h /2m !
2 0 o

�.10!

the autocovariance function is replaced by the uniquely related

spectral density function, since the latter has more convenient mathematical

properties and ties directly into dynamic response analysis.
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and for upcrossing of the mean

X o! =  m /m !
2 0

�. 11!

The Incan time between successive upcrossing E T! is the reciprocal of X o!,

E[T! =  m /m !
2 0

�.12!

F h [t! " e

2

= exp -A o! te ~! �.13!

given that h/van is large. This result does not rest on a narrow-band

assumption. The distribution of all inaxitna  Figure 3.1!, and not. simply

the largest maxima is Rayleigh distributed,

F  h! = 1 - exp - h /2mo!2

a result which has been derived in several ways  e.g., Cartwright, 1958;

Cartwright and Longuet-Higgins, 1956; Bonneau, 1971; Ochi, 1973! .

These upcrossing probabilities allow calculation of the distribution

of extreme wave heights, by setting the cdf of h equal to the probability
Inax

of not crossing an arbitrary level in time t The expected number of up-

crossings of h in time t is simply A h!t, and asymtotically for large h the

number n approaches a Poisson distribution  Cramer and Leadbetter, 1967!,
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For narrow band processes the wave height, h, or maximum range of h t!

between zero-upcrossings, is approximately H=2h, thus H is also Rayleigh
max

distributed  Figure 3.1! . For wide band processes this need not follow.

In such processes the correlation between consecutive h and h . may be
max min

small and though they are assumed to be marginally Rayleigh . distributed,

their difference may not be. Corrections to the Rayleigh distribution for

H have been given by Haring, et al. �976!, who report about 10% empirical

-3
reduction in H: 1 � F H ! = 10 compared with the Rayleigh cdf.

0 0

Jahns and Wheeler �972! conclude on the basis of hindcasting and

empirical data that the Rayleigh distribution of h signficantly under-

estimates the actual probability of occurrence of large maxima; however,

that the poor correlation between peak and following trough in broad band

processes decreases the exceedance probabilities of H. Similar evidence

has been presented by Nolte and Hsu �972!, Thompson �979! Haring, et al.

�976!, and Forristall �978!, among others. Recently, Nolta and Hsu �979!

have presented a statistical filtering procedure for minimizing the influence

of these biases on prediction.

The reason for these biases is that real sea states are not sufficiently

narrow band  <0.3/E[T]! for the Rayleigh distribution to be a good approxi-

mation. Also h t! seems to diverge from the Gaussian assumption for large

positive and negative deviations  Figure 3.2!. In general, a 10% over-

prediction of H for given exceedance probabilities seems to be somewhat

agreed upon.

Because the load effect on an offshore structure depends on both wave

height and period, the joint distribution of H, T is of importance. In

general, less work has been done on this joint dependency than on H alone,

but certain models are available. The summary here follows Battjes �978!

and is brief.



Bretschneider �959! proposed for developed sea states that H and T

be taken independent and each marginally distributed as Rayleigh variables.

Specifically, for the normalized variables   = M/ m and v = T/K[T],1

f  F�v! = [ge ] ~ [4[' � 2! T exp -I' �.2! x !] . �.14!-QF. 4 3 4 4

 m,/m j T � 1
1 0

 m m /m -1!
0 2

�. 15!

the distribution becomes

f <,K! = [Fexp   � � Z !] ~ [ exp - ~ q ]]
1 2 122

2 lan
2

�.16!

-1
That is, f  F j = Rayleigh and f  </F! = N o,g ! . Contours of this joint

pdf are shown in Figure 3.3.

Cavanie, et al. �976! have also derived a theoretical joint distri-

bution for narrow band Gaussian processes by considering the joint distri-

bution of h t! and h t!. The resulting density is  Figure 3.3!

 g z � 0 ! + a a ! �.17!22 22 24

2 4

3 2 -5
2a

f   ,xj � 4 exp
v 2zc �-s ! p

Recent empiriCal work, however,  e.g., Earle, et al. 1974! fails to confirm

this distribution using hurricane Camille data. Battjes, et al �972!

have suggested a bivariate Rayleigh pdf including a covariance term.

Wooding �955! and Longuet-Higgins �957! derived a theoretical joint

distribution for narrow band Gaussian processes based on Rice's �944!

results for the envelope of a random process. Renormalizing the period to
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where

2
c = 1-m /mm

2 o 4

1 2
a = � 1+�- !

2

! = Z[T]/E[T ]
m

�.18!

+
where E[T ] is the mean time between positive maxima, �/a!  m /m ! . For

m 2 4

large g, the marginal pdf f  g! is asymptotically Rayleigh.

For all cases the marginal distributions of wave height are about

the same. The marginal distributions on period, however, differ somewhat.

As can be seen in Figure 3.3, the distributions of Wooding and Longuet-

I
Higgins and the distribution of Cavanie, et al. become similar for large

considerably more empirical work is needed on this problem, however.

3.1.3 Combined Exceedance Probabilities

istic parameters  H ,T, 9!, and the short term description of a stationary,
c

homogeneous sea state having those parameters must be combined.

considering maximum wave height H, the conditional cdf of H given

 H, T, 6! is from Equation �.13!,
c

To estimate wave exceedance probabilities for the design life of a

structure the long term description of the temporal variation of character-



2

F H~ H ! = 1 � exp  � � !2H

c 2
c

�. l9!

where H is conventionally defined either as H, the mean of the largest
c 1/3

1/3 of the wave height, or 4m . For narrow band Gaussian processes these
0

are identical. Xf f  H ! is the distribution of H over time, then the
C C

marginal cdf on H becomes simply

F H! =   [1-exp  � � ! J f  H ! dH
2H

c H
2

�.20!

Commonly, however, only sea states for which H > H are considered
C 0

 i.e., storms!, and the occurrence of such states are considered a Poisson

process with parameters A. Then the distribution of H for H > H becomes
c

2

f  H! = f [1-exp � � > ] f  H 1H ~H !dH2H

C C 0 C
0

�.21!

From Equation 3.10 the expected number of exceedences of H within a

storm of duration D and characteristic wave height H
C

!  H/D! =  m /m ! exp  � 2H /H !D
2 2

2 0 C
�.22!

and the cdf of the largest wave height is

  H/D !
max

�.23!

with direct generalization to larger numbers of sea state parameters. This

expresses the probability that any one peak is of less than height H



Thus, for n storms of differing H the cdf of largest wave height becomes
C

F H !n! =   exp  - ! [H/D! ] f H ~H>H !dH
max c 0 c

o

�.24!

A difficulty arises in application because the storm duration is

itself a random variable, and to date the models for the pdf of duration

are poorly verified by empirical data. Nost analyses begin by noting the

average duration above some level H, as being  l-F H ! ! times the total
0 o

time period divided by the expected number of storms with H > H , thenc � 0

make a distribution assumption for D and estimate the parameters from

historical data. For example, Vik and Houmb  l978! use a Weibull pdf,

Nolte and Hsu  l979! use an exponential pdf, and occasionally a Normal pdf

is suggested. Theoretical solutions for disussions of a random process

above an arbitrary level are difficult to formulate.

Once a distribution for storm durations is obtained it is incorporated

in Equation 3.24 by integrating the conditional pdf of H over the pdf
max

of D. Because this i* itself difficult, and because f D! is not well

grounded, one of two approximations is usually introduced. The first is

to approximate the average duration as above, and then estimate the average

number of waves per storm k as

�. 25!E[k] " E[D]/K[T]

implying a loose form of narrow band assumption. Then from Equation 3.24

and similarly on the largest in n storms. The second approximation  e.g.,

an extreme value distribution on the largest wave per storm can be calculated
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3.2 Transfer Functions

For a given wave height, period, and other environmental conditions

some model must be introduced to predict resulting loads on the structure

Such a model is here called the loading transfer function. As with any

modeling this transfer introduces uncertainties  Section 5.1! .

Current predictions of wave forces on offshore structures are commonly

based on Morison's equation �950!, in which the horizontal force on a ver-

tical cylinder extending from the sea bottom and piercing the surface is

divided into two parts: �! An inertial force taken linearly proportional

to fluid particle acceleration, and �! a drag force taken proportional to

the square of fluid particle velocity and in its direction,

1 1 2dF = � CyDuau~+ � C pvD a �.26!

in which dF is the differential force along the cylinder, C a drag co-
D

efficient, C an inertia coefficient, p the fluid density, u fluid par-

ticle velocity, and a fluid particle acceleration  Figure 3.4! . This

force acts in the direction of the wave motion and varies along the depth

of the cylinder due to changes in u and a. The total horizontal force

Thorn 1971; SchueDer and Choi, 1977! is not to consider sea stateat all f oz

to implicitly assume that Pr n>1 ~t = lyearj -+ 0, and simply take the

largest wave per year as the basic random variable. The common assumption

is that this largest yearly wave is Weibull or Double Exponential Distributed,

and from extreme value theory the exceedance probabilities for largest

annual wave an calculated for various design lives.
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on the cylinder is the integral of dF acting at some level z depending on

the distribution with depth.

The derivation of xorison's equation is based on a large number of

simplifying assumptions. Among these are that only a single pile is

considered, and that the pile diameter, D, is small compared with the wave

length, L. Thus, the kinematics of wave flow are considered unchanging

over the cross section. Plow is assumed rectalinear, even though Particle

motion is actually orbital, and the cyliner is assumed to be at right

angles to the directions of u and a. The effect of wave history is ignored,

as are lateral  i e., lift! forces on the cylinder. Obviously, the basic

linear decomposition of drag forces due to fluid viscosity and decrease in

pressure behind the cyliner, and inertial forces due to acceleration of the

displaced volume is also assumed valid.

The intent in noting these well known assumptions is on.ly to suggest

the underlying reasons for model uncertainty in predicting loading transfer.

To use Morison's equation an estimate of particle velocity and accel-

eration must be made as a function of depth. These predictions are usually

made on the basis of one form or another of wave theory, rather than from

empirical analyses. These are usually linear. Thi.s also introduces uncer-

tainty, as the theoretical u and a may differ from those realized.

Composition of uncertainties in drag and inertia coefficients made using

wave theory and simultaneous observation of u, a seem to confirm this con-

tention  e.g., Kim and Hibbard, l975!. However, it should be noted that

the variation between linear and non � linear wave theory in predicting forces

is small, except for high h!D  e g. > 0.8!  Raman and Veukatanar-Asaiah,

l976!; Chakrabarti, l975!. The variance between observed and predicted. is

large r .
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To include lift forces the Morison equation is usually addended with

the term

1 2
F =K pDu

L 2 L
�. 27!

acting horizontally perpendicular to the direction of u. C is the lift
L

coefficient and summarizes the effects of eddies forming around the cylinder

and separating from it. Experimental work indicates that for Keulegen-

Carpender numbers, uT/L, less than aboQt 5, these lift forces are negli-

gible  Chakrabarti, et al,1976! . T is the wave period. However, for

uT/D of the ordez of 15 the total forces including the lift component can

be as large as 60% higher than that pzedicted from Morison's equation,

and acts in a direction oblique to u.

The effect of multiple cylinder groups on individual cylinder forces

has been studied by Chakzabarti �978!, Spring and Monkmeyer �975!, and

Twersky �952! . These studies have all been theoretical and. have not been

extensively verified experimentally. The conclusions of these studies is

that for center to center cylinder spacings of greater than about 2.5 or 3

diameters,and. for either cylinders in a single row, three in equilateral

triangle, or four in a square, the difference between single cylinder

forces when alone and in a group are small. For closer spacings the increase

in single cylinder force can become large.

Present practice treats Norison's equation as a semi-empirical model

 i.e., black box!, by estimating C i D ~ and C empirically and allowing
L

uncertainty in the coefficients to include the uncertainty of the model

itself. Thus, unsurprisingly, the uncertainty in these coefficients is
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large. Furthermore, the estimates of the coefficients depend on the

procedure used to make them. Morison, et al. 's approach was to set the

measured force equal to either the drag or inertial force when the other

was theoretically zero. Keulegan and Carpenter  l958! decomposed the

measured force into Pourier components and used the amplitudes of these to

estimate the coefficients. Current practice is to fit Morison's equation

to measured forces through some least squares criterian. These various

methods yield different estimates of C , C unless the measured forces
D M

are given identically by the postulated madel, which of course they are

not. For example, Sarphaya �975! has studied one dimensional oscilating

flow over a cylinder and found a 4%, consistent difference in coefficient

estimates made by Fourier decomposition and least squares. The question

of coefficient estimates is therefore a statistical one, and some error

about the best estimates will exist even for infinite data series.

Estimates of C and C vary considerably from wave' to wave, as shown
D M

in Figure 3.5, and are a function of two dimensionless numbers, the Reynolds

R and Keulegan-Carpenter KC numbers.
e

R = uD/v
e

�.28!KC = uT/D

where v is the kinematic viscosity of the fluid, and KC is sometimes called

the period number. When averaged over a number of waves this scatter is

naturally reduced  Figure 3.6!, although a large residual error remains.

Current practice is to take C to lie between about 0.7 and l.0, and C
D

between 1.5 and 2.0. The associated coefficients of variation are of' the
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I'I
order of 35% for C and 40% for C  Schueller, 1976!

D M

The effect of uncertainties introduced by using  linear! wave theory

to predict u and a, as compared with direct observations, is seen in Kim

and Hubbard's results �975! . By measuring u and a simultaneously with

force the observed coefficients of variation in C and C were reduced to
D 8

24% and 22% respectfully. However, because wave thoery is used in prac-

tice for predicting forces these reductions in uncertainty do not apply.

As discussed by Ramberg and Niedzwecki �979!, the assumption of

uniform force coefficients over the depth of the cylinder also introduces

erroz. The conclusion of this work is that the assumptions of uniform C
D

leads to over prediction of force, attributable to variations in the degree

to which fluid particle movements approach the one-dimensional assumption.

Again, the observed coefficients of variation for C , C determined from
D N

empirical analyses include such uncertainty.

3.3 Combined Wave Loading Uncertainties

In assessing the combined uncertainty in environmental loads on

offshore structure each of the contributions of stochastic, statistical, and

loading transfer function must be included. In this section the combined

uncertainty in wave loading for the Georges Bank site is

considered.

From Section 3.l the annual hazard exposure to wave heights is

shown in Figure 3.7. This figure shows the cumulative distribution of wave

height-based on best estimate stochastic parameters, and the predictive dis-

tribution incorporating statistical uncertainty.

From Section 3.2 the load transfer function and its associated uncer-

tainty are shown in Figure 3.8 for the design platform. Wave
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heights breaking over the platform deck are not considered in this analysis

 Cf., Committee on Offshore Reliability, ASCR, l979! .

Combining Figures 3.7 and 3.8 techniques leads. to the annual CDF of

wave loading shown in Figure 3.9. This figure also shows CDF's for 25

and 50 year design lives. These distributions include both stochastic and

statistical uncertainty.
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4. SOIL EXPLORATIOH

Uncertainties in bottom conditions and parameter estimates are caused

by the spatial variation of bottom sediments, by limited numbers of measure-

ments, by bias error in measuring sediment properties, by undetected geo-

logical details, and by poorly defined strata geometry.

Certainly, any problem of measuring sediment properties and inferring subsurface

conditions that is difficult onshore is even more difficult offshore. The

cost of site investigation is high, the technical difficulty of making

accurate measurements great, and the number of direct observations limited.

4.1 Site Investigation Program

A typical site investigation program offshore begins with the collec-

tion of geophysical information  i.e., remote sensing! over a large region.

Because there is often latitude in the exact siting of an offshore facility,

this preliminary reconnaissance serves as a screening and site selection

stage in which favorable conditions are more precisely located. Upon deciding

on one or more favorable locations, further geophysical information is

collected on a more intense pattern.

4.l.l Accoustical Data

The most common offshore geophysical measurements for geotechnical

purposes are accoustical, that is, high frequency seismic reflection surveys.

Accoustical sources based on high power spark gaps  "sparkers"! generate

frequencies in the range 200 Hz to l000 Hz, and penetrate to 300 or 400 m

below the mudline, depending on sediment properties Because of the com-

paritively low frequency of sparkers, however, the resolution of the

returned signal is seldom better than about 5m, meaning that details of the

subbottom geometry are not defined and that the critical sediment zones
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iramediately below the seabed are difficult to evaluate. More resolution

can be obtained using higher frequency "boomers" or multi-electrode sparXers,

but these have correspondingly less penetration  i.e., greater attenuation! .

A difficulty with accoustical data is how to interpret it. Returned

reflected signals show pleasingly precise delineations of "reflectors" in the

subbottorn  Figure 4.l!, but what precisely the reflectors represent, where

exactly they are, and what details fail to appear in the traces are difficult

questions to answer.

All acoustical data is expressed as time delays between transmission

and reflection. To change time delay into geometric information requires

that physical properties of the sediments  e.g., seismic velocity, density!

be known or assumed. Since these properties are known only imprecisely

without direct physical measurements, the geometry of stratification, lenses

and other details is only imprecisely inferrable from the acoustic profiles.

Therefore, acoustic profiles must always be calibrated by direct observations

of the subbottom sediments  i.e., borings!, and they are therefore used at

particular sites more to interpolate among borings than to define the sub-

bottom itself. Even then, however, the spatial variation of sediment

properties adds uncertainty to geometric interpretations of the acoustical

data.

Some work has been done in attempting to correlate acoustical properties

of sediments to physical, particularly engineering, properties. This work

has met with little success. The only apparent correlation of signficance

is sonic velocity with sediment density  Figure 4.2!, but even though den-

sity is an important. index properties for sediments  e.g., Figure 4.3! the

level of correlation is insufficient to be of much use. Attempts to predict

properties like undrained shear strength or compressibility have produced

few results.
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The detection of anomalies in subbottnm profiles is potentially the

most important use of acoustical data. However, few carefully controlled

experimental programs have been carried out. Proponents of geophysical

techniques often point out the past successes of geophysical surveys in

locating anomalies on or beneath the sea bottom. However, for inferrential

purposes one must not only know the conditional probability that an anomaly

in the data is an anomaly in situ, but also that an anomaly in situ produces

an anomaly in the data. Since most field research on geophysics is based

on an analysis of successes but not failures -- which in fairness is due to

the fact that one doesn't know that an existing anomaly is undetected�

only the first of these two conditional probabilities is known. This

means inferences of the probability of undetected details are not possible

from the geophysical data.

4.1.2 Direct Measurements

The next and most important stage in site investigation is to gather

direct information on the bottom sediments. This is done in three ways,

using penetration probes, specimen sampling, and in situ testing.

The most rudimentary information is obtained by taking grab or similar

samples of the bottom sediments near the mudline. These specimens are easy

to obtain and cheap, but are highly or totally disturbed, and only provide

information on very shallow strata. They allow classification of surface

sediments, but contributelittle other information of geotechnical signifi-

cance.

Other procedures for near surface sampling allow less disturbed samples

to be taken, but again are limited in their depth of penetration. The most

common of these are gravity samples, which use the inertia of the falling
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sampler to drive the sampling tube into the bottom sediment  Figure 4 .4! .

There are several forms of gravity sampling devices, but they are all

limited to depths of one to two meters and all take rapidly intruded speci-

mens  i.e., "dynamic" !. Therefore, the specimens so obtained are mare

disturbed than those taken by intrusion. Similarly, vitracores taken

by vibratory penetration of a sampling tube have limited depth penetration

and introduce severe sample disturbance.

Deeper and less disturbed specimens are taken by borings, made either

from the water surface or from specially designed submersible drilling

stages  Figure 4.5!. For borings off fixed structure or in calm seas,

common soil samplers  e.g., split spoons or thin walled tube sampiers! are

typically used. These have the same drawbacks and advantages as when used

onshore. For drilling off floating structures or boats, wire line samples

are usually used. There are various sorts of these, but generally follow the

principle illustrated in Figure 4.6. Wire line sampling from drilling boats

can be made to depths of over 200 m  McClelland, 1942!.

As with any geotechnical sampling, the specimens recovered are to some

extent disturbed  Figure 4.7!. Measurements of physical parameters are made

by testing specimens in the laboratory, and are again subject to testing

errors both random and biased. An extensive discussion of these is given

by Ladd �977!. Index properties are usually measured, for example Atterberg

limits, and used to predict in situ properties through well known corxelations

As onshore, sands are exceedingly difficult to sample undisturbed.

Therefore, laboratory tests are made on reconstituted specimens and the results

expressed pararnetrically with relative density. The well-known error in

measurements of relative density  e.g., Taverna~,1976! introduce considerable

uncertainty to predictions of in situ properties made this way.
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Increasing use is being made of penetration probes in offshore work,

particularly core penetration  CPT! . The advantages of such tests are

that they are easier and faster than taking specimens, less expensive, and

directly measure properties in situ. The disadvantage has traditionally been

that the correlations between penetration resistance and geotechnical proper-

ties are poor  i.e., these must scatter in the data!, and primarily

empirical. Recent work on penetration testing, however, seems to be leading

to theoretical relations among core resistance and engineering properties,

and reducing scatter in the empirical relations  e.g., Vivitrat, et. al. 1979!

The CPT very simply measures the resistance of the sediments to pene-

tration by a cone shaped probe of specified geometry  Figure 4.8>. The

resistance of the cone itself is always measured, and it is increasingly

common to measure the drag resistance on the sleeve of the rod to which the

cone is attached. From these measurements certain engineering properties

can be inferred. Most directly, the CPT is used to infer undrained strength

 friction angle or relative density in sands!, but inferrence of deformation

properties is also sometimes attempted. Recent work on piezometer measure-

ments at the cone tip have indicated that it may also be possible to measure

consolidation properties in clay from CPT results.

Finally, a number of other in situ tests of general use onshore are

sometimes used offshore. Of these, the field vane is common. However,

pressure meter tests and even plate load tests have been used on occasion,

if not routinely  e.g., H5eg and Tang, 1978! . Typically, the same magnitudes

of correction factors and the same correlations are used for these tests

onshore and off.
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4.1.3 Zxploration Programs

Typical exploration programs for a large gravity platform are illustrated

by those presented by Hitchings, et. al., �976!md H5eg and Tang �978! . Course

grid acoustic surveys might be run at 300 to 500 m spacing, followed by a

fine grid at perhaps 50 to 100 m spacing. In the direct sampling and testing

phase on the order of 10 to l5 penetrations and a like number of borings are

made. Most of these are shallow, penetrating perhaps to 25 m; but a few

must be deep, penetrating perhaps to 100 m beneath the mudline. The zegion

of significant influence of the structure is from one to two diameters of

the base, depending on the mode of performance, so this depth of investiga-

tion is manditory.

Boring and probe layouts are shown in Figures 4.9, 4.10, and 4.11.

The patterns are plannedto give full spatial coverage of the site, such that

trends or major inhomgeneities will be identified. However, they must also

be planned such that cross calibrations are possible among specimen tests, in-

situ measurements, and geophysical surveys. Since the exact final location

of the completed stzucture is often unceztain, particularly with gravity plat-

forms that are floated to the site and sunk, the pattern is often not

specifically designed with respect to imposed stress distributions as in

onshore site investigation. The investigation program typically requires 3 to

6 months from beginning to end, and in 1979 figures costs from one to two

million dollars.

4.2 Offshore Sediment Profiles

Offshore sediments vary perhaps even more than onshore soils, from

terrigenous detritus derived from continental runoff, to biogenic
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calcareuites and calcilutites derived from marine organisms. This section

discusses geotechnical conditions at the Georges Bank site, used as an example

in later chapters of the report. No attempt is made to more broadly cata-

gorize marine sediments. Such more general discussions are found in Noorany

and Gizienski �970!, Shepard �948!, and Richards �967! .

The site chosen for test applications is that previously considered by

Laszlo �976!. It lies on the southeast edge of Georges Bank in 100 m �00 ft.!

of water, approximately 40 km Northeast of Lydonia Canyon  Figure 4.12! .

The bottom sediments at the mudline are mostly sand with some gravelly sands;

and geologically the site is near to boundary between Triasic marine sediments

and the older Avalon Platform �60 m.g.! . Normal faults form the boundary

between these formations, and like the entire Georges Bank, a number of small

normal faults are within a few tens of kilometers.

The Georges Bank itself is a remnant of the coastal plane, isolated from

the surrounded continental shelf by erosion of the Gulf of Maine, Great South

Channel, and Northeast Channel. Late tertiary erosion modified by glacial

events are primarily responsible for the present bank morphology. Pstimates

of PleistOCene deposition On the Bank vary greatly.*

During the Cretaceous and Tertiary the continental shelf was formed by

up- and outbuilding on the continental margin. Deposition was interrupted

at the beginning of the Tertiary by an episode of extensive erosion, resulting

in a non-conformity between Cretacious and Tertiary.

In late Tertiary a lowland formed Northwest of the present bank and

deepened into the Gulf of Maine. Two southward flowing drainage systems

formed east and west of the present bank, and by early Pleistocene much of

the Tertiary material to the west was removed by fluvial and glacial action

*The geological history is based on Lewis and Sylvester �975! .
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The present canyons on the south of the bank  Hydrographer, Welker,

Oceanographer, Gilbert, and Lydonia! are probably the result of drainage out-

lets during periods of low sea level.

Early Pleistocene glaciation deepened the Gulf of Maine and provided

large amounts of sediments. Prior to the final glacial episode a transgr'essian

of the sea planed the Bank forming a non-conformity, which was modified by

subaerial erosion during the last glaciation. Many stream channels incise

the non-conformity in the northeast corner of the Banks, decreasing in number

eastward. These are probably the remains of a late Pleistocene drainage

system which flowed eastward. Subaerial exposure appears to have lasted long

enough to produce complex cut and fill relations in materials overlying the

non-conformity.

Very little direct information on geotechnical properties has been

gathered near the site, or on Georges Bank. Deep geophysics surveys  e.g.,

seismic refraction! have been run, but these give essentially no information

on sediments near the sea bottom. The available sources of geotechnical

information from which data have been taken are shown in Table 4.1. No direct

physical property data was taken during the present course of study.

The best direct information comes, first, from borings and standard

penetration tests  SPT! performed by Moran, Proctor, Mueser, and Rutledge

for the Texas Towers Study. In particular, borings were made from drilling

barges on the Nantucket and Georges Shoals, bordering the Great South Channel.

Second, the best direct information comes from the Atlantic Margin Coring

Project, performed by the USGS. This study resulted in acoustic survey of

Georges Bank, and in six borings on the Bank. The location of all of these

borings are shown on Figure 4.13, the acoustical survey grid in Figure 4.14.
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~Ye r~Da~a ~ee ort or Pc~o'ect

Texas Tower Feasibility Study
 Bureau of Yards and Docks, USN!

1959

Atlantic Generating Studies
 Dames and Moore!

1973

Wilkinson Basin Studies

 Richards!

1973,4

1975 Shallow Sedimentary Study
of Georges Bank
 Lewis and Sylwester � U.S.G.S !

Atlantic Margin Coring Project
� Preliminary Report
 U. S.G.S . !

1976

Table 4.1 Sources of Geotechnical Information
on Georges Bank Site Used in Present
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As a cursory overview, the Georges Bank tracts and the test site in

particular have gray Pleistocene gravelly sands to a depth of 50 to 100 m

below the mudline. Toward the flanks of the Bank these Pleistocene sedi-

ments grade into silty sands and silty gravelly sands. The Pleistocene

sediments are terrestial detritus, without any apparent appearance of car-

bonate sands or silts, in keeping with the general nature of the sediments

of the Northern Atlantic States  Hathaway, et. a1.,1979!. Beneath the

Pleistocene sands lie Miocene clayey silts and silty sands to an unexplored

depth. Borings made on the Bank in connection with the AMCP extend only

slightly more than 100 m below the mudline. Typical profiles from the Texas

Towers project and AMCP are shown in Figures 4 15 and 4.16.

4.3 Uncertainties in Site Characterization.

Given the limited number of observations, measurement errors, and other

factors obscuring the characterization of site conditions, attempts are now

being made to quantify  " rationalize" ! the uncertainties of parameter estima-

tion, mapping, and general site exploration. The objective of such an

approach, reviewed and extended in the following subsections, is to arrive

at. a useable description of uncertainty for assessing reliability and risk

This is not a straightforward task. The uncertainties of site characteriza-

tion cannot be made entirely objective and many traditional methods of statis-

tical inference require rethinking in application to geological exploration.

The following sections provide first an epistemological background for

statistical site characterization, and then an overview of problems and

current approaches to quantification. Later subsections address each of

three principal tasks in site characterization: parameter estimation, for-

mation mapping, and anomaly detection.
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4.3.1 Inductive Basis of Site Characterization

The application of probabilistic modeling to site characterization has

been seen by many as an opportunity to make objective a process traditionally

seen *s subjective. While probabilistic modeling may provide insights into

the problem, and may for well defined questions provide quantitative answers,

at the basis of geological exploration are epistemological questions which

probability theory cannot answer. While important questions in exploration

and characterization are amenable to probabilistic modeling, not all are,

There are fundamental limitations to the "rational approach" which must be

recognized.

As in any inferential task, the data of site characterization do not

"speak for themselves". They may, in conjunction with some model of how they

arise, lead one to alter what was suspected or believed to some new belief;

but at its underpinings geological exploration is an inductive undertaking,

and the uncertainties of site characterization are therefore necessarily

subjective.

The conclusions of site characterization rest on three stages of

considerations. First, in order for probabilities over hypotheses or param-

eters to be inferred, the hypotheses or parameters must be thought of. That

is, they must be imagined through some process of inductive reasoning.

Then, the extent to which the hypotheses or parameters are believed must be

considered. That is, initial degrees of confirmation must be assigned to the

hypotheses or parameters before any data are analysed. Finally, the data

themselves are evaluated in light of the hypotheses to modify the initial

degree of confirmation. That is, the degree to which the data are or are not

consistent with the hypotheses or parameters leads to either increased or

decreased belief in the latter.
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Figure 4. 16 -- inferr ed profi le
from USGS dr i l ling pr ogr am

ay, et a/., l979!.
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gravels

gr'ave lly sands

sa'nds vi th she l ls
or fz agmen ts

sit*y sand



- 83-

Only the last of these three stages can be considered objective, in

the sense that a set of mathematical relationships can be specified from

which conclusions necessarily follow. The first two stages are purely induc-

tive, and if Hume is to be believed, "non-logical". This means that the

conclusions of site characterization contain much more than the records them�

selves. Hypotheses are the result of exploration, and uncertainties mani-

fest in the degree to which these are or are not confirmed by observations

Therefore, the uncertainty reflects ignorance, it has little to do with

natural randomness.

Figures 4.17a, b illustrate this subjectivity better than many more

words could. Each shows a map of the same area of Northern Canada, but

drawn 35 years apart. It would be unlikely that the differences were caused

by actual changes in the distribution of minerals and rocks, but interestingly

they are also not changed by differences in information. The data bases for

the two maps are the same. What did change between 1923 and 3.9S8 was

geological theory, and this change led to a reinterpretation of the physical

observations. This sort of uncertainty, between the map of 4.17a and that of

4.17b, is not a statistical problem but a problem of induction.

The influence of initial degree of confirmation 'is shown in Figure

4 18. Here the probability of an undetected anomaly in a sediment profile

after exploraton has failed to find it is plotted as a function of its

probability prior to exploration and of the efficiency  extent! of the

exploration program. Efficiency here is measured by the conditional prob-

ability that. the anomaly would be found if it existed. Only if this efficiency

is high  say, > 80'! does the confirmation of the hypothesis of an anomaly

existing become insensitive to prior, mostly subjective information.
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Figure 9.27 -- Two maps of the same area of Canada
m'appinq thir ty year s apar t. Nap on left dates fr om
2958, that on right from 2988. Data base is the
same for both maps. Taken from Barrison, 2968.

1.0

0.8

0.6

POSTERIOR

PROBABILITY

0.2

0 0.2 0.4 0.6 0.8 1.0
PRIOR PROBABILITY

Figure N. 28 -- Belationship between prior probabi2ity
of an anomaly existing and the posterior pr obabi 2i ty
if none is found during exploration, as a function of
the sear'ch e f ficacy  i. e., condi tiona 2 pr obabi li ty o f
finding an existing anoma2y!.
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In most geotechnical applications this efficacy is more in the range of 20 to

30%,.

The implication of Figures 4.17a, b and 4.18 is that only parts of site

exploration and characterization can be statistically modelled. This does

not diminish the importance of such modeling, but emphasizes that one must

distinguish between what can and what cannot be modelled in engineering

analysis. The role of statistical analysis is to logically specify how

observations modify prior probabilities of hypotheses or parameters to

posterior  after data! probabilities.

4.3.2 Development of Statistical Site Characterization

While hypothesis formulation and initial degrees of confirmation are

subjective, the support offered by field data can be statistically modelled.

It is important to briefly distinguish among schools of probabilistic

thought. Probability theory is a mathematical construct predicated on

axioms within which "probability" is a primitive term. Properties of

probability are specified, but its meaning is not. This has led to a

number of philosophical interpretations, generally grouped into two schools:

the frequentist school, which holds probability to be the relative fre-

quency of an event within a long series of similar trials; and the degree-

of-belief school, which holds probability to be the degree to which one

believes in the probable occurrence of an event or the truth of a proposition.

The rise of rationalism and the development of the British school of

statistics from about 1880 to 1940, and the resurgence of interest in belief

starting about 1926, lead to strongly held opinions on the philosophical

basis of probability. The distinction between frequency and belief as
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The practical implications of the philosophical distinction between

frequency and belief are the following:

~ Within frequentist thought probabilities are not defined on the

state-of-nature. A fault exists at a particular site with prob-

ability 0 or 1. Whether or not a certain exploration program

detects the fault is admissable of probabilistic description,

since it can be conceived of as a frequency. But one time events

or specific realizations cannot. In frequentist theory, one can

only make statements of the following type: "if a fault exists,

this exploration program has a 35% chance of finding it."

Degree-of-belief philosophy allows probabilities on unique

events. One can in this case say, "the probability of a fault

existing at the site is 60%." A difficulty with belief theory

however, is that the issue of belief prior to evidence must be

explicitly considered. By disallowing probabilities on "nature"

frequentist theory sidesteps this issue.

Degree-of-belief theory is heavily dependent on one familiar equation,

Bayes' Theorem:

P H~E! P H! P E H! �.1!

complimentary rather than competing philosophies is today not very popular.

Yet, one could argue, that frequency and belief are distinct and that their

commonality through mathematical probability theory is the extent of

their connection.



The probability of an hypothesis, H, conditioned on evidence, E, is pro-

portional to the product of the marginal probability of H, and the condi-

tional probability of E. Because the marginal probability of H is usual ly

that prior to observing E, it is caLLed the "prior" probability. The

conditional probability of the evidence is called the likelihood of H. The

decomposing equation shows the unification Bayesian methods bring to

inference. The entire evidence of field data enters through the likelihood

function, which is the probabilistic model for how observations occur.

Pre-existing  in part subjective! information enters through the prior

distribution.

Uncertaint in predictions

Subsurface data are ultimately used to make predictions about perform-

ance. Therefore, the extent of exploration and the types of data to be

collected, depend on the relationship of subsurface uncertainty to predictive

uncertainty. If better subsurface information would not influence decisions,

there is no sense collecting it.

Predictions are made in three ways,

~ Extrapolating historical frequency,

~ Extending natural law, and

~ Quantifying human judgment.

The first two are discussed here.

To extrapolate frequencies or extend laws requires an abstraction of

the real world, a model, into which site specific information generally

enters as parameter values. There are two purposes in modeling: to

understand reality and to predict it. These functions are not always served best
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by the same model. The frequency of 'heads' in tosses of a coin is

accurately predicted by simple Bernoullian theory. However, sophisticated

dynamic analysis, yielding less predictive accuracy, probably yields more

insight. In analyzing exploration, models play the same role as in

analyzing stresses, and suffer the same limitations. Use of elastic

theory is much like use of the normal distribution.

As a first approximation, predictive uncertainty can be divided into

three categories:

~ parameter uncertainty -- ignorance of, or inability to measure

soil and rock properties;

Model uncertainty � simplication and approximation in abstract-

ing reality;

~ Changed conditions � overlooking important mechanisms or

geological details.

Site characterization information enters predictions through param-

eters and boundary conditions. As used here, model uncertainty applies

only to the geotechnical models for strength, deformation, and flow, and

not to boundary conditions or identification of important mechanisms.

StratecCic modeling of site exploration

The applicability of probability theory to site exploration lies

in its facility for handling two questions:

~ How much effort should be expended in exploring a site and

how should it be allocated to return the most information'?

~ What inferences can be drawn from exploration data, and what

are the uncertainties associated with those inferences?
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The traditional temporal division of exploration into reconnaissance,

preliminary, and in-depth investigation is not particularly useful in

strategy optimization, because the division is not along functional lines.

Thus a new taxonomy, one based on classes of problems, might be introduced.

This is not a replacement for the traditional taxonomy, just a new way of

viewing the same problem Figure 4.I9 shows one possibility. Exploration

is divided into four categories of problems;

~ Reconnaissance: Reviewing existing qualitative information

and subjective opinion to form initial hypotheses about site

geology and possible inhomogeneities.

~ Pattern Recognition and mcon8tmotion: Recognizing geological

forms and extrapolating to areas not actually observed  i.e.,

napping!.

~ Seazeh: Finding geological details, or reducing the posterior

probability of adverse details to acceptable limits. Locating

"non-stationarities" in statistically homogeneous fields.

~ Sampling Homogeneous Azterial Proper'ties: Using field and

laboratory tests to infer in situ material properties related to

strength, deformation, and permeability. Sampling and character-

izing pervasive inhomogr neities  e.g., joints! .

The strength of this characterization is that it provides an

organizing reference for the problems of exploration, in which functionally

similar tasks are grouped together. The remainder of Section 4 summarizes

uncertainties associated with pattern recognition, search, and sampling

material properties; presents techniques for quantifying these uncertainties;

and estimates of them.



- 91

4.3.3 Parameter Estimation

Estimation of the strength, deformation, and permeability properties of

homogeneous zones or strata is made difficult by two sources of uncertainty

The first is spatial variability of the sediment properties, which leads to

variation among observations at different location, and just as importantly

leads to the problem of selecting an equivalent deterministic  i.e., spatially

The now commonly used model of spatial variation of sediment properties

is the stationary random field. A vector of soil properties g is represented

by a mean trend over space t x! plus a random error term s x!, where x is the

basis of the space. Thus  Figure 4.22!,

�. 1!g x! = t  x! + s  x!

The error term s is assumed to be autocorrelated in the space x, and possibly

cross-correlated among the various soil properties g =  y ,..., y !.
1 k

In the geotechnical literature work on sampling from correlated random fields

has been presented by Lumb �974, 1975!, Vanmazcke �977!, Alonzo �976!, and

in a series of papers by Veneziano  with Faccioli, 1975; Kitanidis, 1977;

Queiroz, 1977!. This work is related to sampling problems in geology  Matheron,

1971, Agterberg, 1970!, hydrology  Rodriguez-lurbe, 1974; Bras, 1974!,

groundwater flow  Bakr, et. al., 1977; Wilson, 1978!, time series analysis

 Box and Jenkins, 1970!, and other fields  e.g., Natern, 1960; Whittle,

1963!. Veneziano �979! has recently presented an overview

uniform! property for use in numerical modeling  Figure 4.20!. The second. is measurement

error, which leads both to bias and random fluctuation on top of the spatial

variation  Figure 4.21!.

~S atial Variation
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friction angle

Figure 4. Pl -- Scatter of meaeuz'ed va2uea
of friction angle

property

?oacti Figure 4.2P -- Abstraction of the spatial
variation of sediment properties at a given
elevation.
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A random field y x! is said to be stationary in the strict sense

if the joint density function of g x !,..., y x ! depends only on the

relative locations of x ,..., x , and is therefore invariant with respect

to changes in the reference. This is a strong assumption, and usually

difficult to verify. A weaker assumption is to say the field is stationary

in the weak or broad sense, meaning that the mean t x! and autocovariance

function R r! are invariant to changes in the reference  i.e., are the

same everywhere!. This latter assumption is usually made for sediment

properties. Stationarity might be thought of as the stochastic equivalent

of deterministic homogeneity, and in fact some workers use "homogeneity"

to mean what is here called stationarity when dealing with spatial  rather

than temporal! variables.

The feature of central importance in random field sampling is the

autocovariance function, R x.,x,! describing the covariance of soil
J

properties at locations x. and x.. Under the assumption of stationarity

this function depends only on the vector separation distance between x. and

x., to be denoted r, and not on the exact locations of x,, x,. Normalizing

R r! by R o!, the point variance of the sediment property, leads to the

autocorrelation function describing the correlation among properties at

various separations. The autocovariance function is of importance because

it substantially influences both the sampling properties of the field, and

the variance in predictions of physical behavior.

Given that soil properties are generally expected to be more similar

when measured at neighboring locations, and to become less and less similar

as their spatial separation increases, moriotonically decaying R r! are

usually assumed Typical functions are shown in Table 4.2 . The simpler
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TABLE 4.2 -- COMNONLY USED AUTOCORRELATION FUNCTIONS FOR
SCALAR RANDOM FIELDSs
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of these, for example the exponential and squared exponential, have been

verified by field observations  e.g., Lumb, 1975; Hilldale, 1971; H5eg and

Tang, l976!  Figures 4.23 and 4.24! .

The extent of autocorrelation is commonly indexed by an "auto-

correlation distance" r , defined such that R r ! = �/e!c . The meaning2
0 o

of this index can be seen in Figure 4.25. Long r imply wavy spatial
0

variations, whereas short r imply rapid fluctuation. In the former case
0

an observation, such as at x in Figure 4.25a, gives information about
0

sediment properties quite far from its own location; in the latter case it

does not. However, the reverse consequence is also of importance; observa-

tions at x and x contain redundant information when r is large, and
0 l o

therefore cannot be treated as independent in drawing inferences about y x! .

Despite the importance of R r! in sampling and predicting physical

processes, it is an artifact of the modeling. There is nothing innately

random about sediment properties. The stochastic model is an expression

of ignorance about subbottom conditions, not random variation. Therefore,

depending on how this spatial variation is divided between a deterministic

mean trend t x! and the random component s x!, the autocovariance function

and the point variance will change  Figure 4.26! .

Table 4.3 summarizes typical point variances and correlation lengths

for various sediment properties, when sampled at individual sites. These

correlation lengths result from assuming a spatially constant mean.

Figure 4.27 shows the autocorrelation function inferred for shallow �.6m!

cone resistance at the Brent B site in the North Sea  H5eg and Tang, 1978! .

As can be seen, r in the range l5 to 60 m is typical.
0



-96-

Figure 4. 28 -- Autocorr elation of SPT biov
count for a dune sanl  after Hi L2date-C'unningham,
2972!.

300200iaa 400 ft.

0. 5

0. 4

0. 8

0. 2

~ ~

0. 0

-0. 2

-0. 2

2020

NUMBER OF L2FTS

Pigur e 4. 24 � � Autocorr'e 2ati on for data o f Fi gur e 4. 20.
Tota 2 data length N= 283.



-97-

Tab Le 4,8 -- Typical var'iances and uutoco~welaiion
Kengtha for' sediment8.

MATERIAL SOURCEPROPERTY

coastal sand Sm Tokheim �976!CPT

WQnch, et al.{1980!

 vertical!

Hdeg and Tang �978!30CPT

SPT 20

Plastic clay
1.3

CPT 0.36Clean sand

1.91clay CPT

w/c 0.16silty loam

compacted clay
 dam core!

North Sea Clay

dune sand

dry density
 horizontal

layers!

dry density
 vertical!

Hi 1 1 dale-Cunningham
�971!

Vanmarke and
Fuleihan {1975!

Alonzo and Kreizek

�975!
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g ab gs 4. 4 -- Zmpi r'ideal di s tz ibution furcation for various
soi b pr oper ties.

pdfMaterial SourceProperty

Wiinch, et al. �980!dry densitycompacted
clay core

Baecher and Rackwitz
�980!

sand pile capacity A

dry sand bearing
capacity Ingra an8 Baecher  l978!

Schultze �975!silt e

uniformity
coefficient

silt
I ~

Sands  various! n, e
'I ~

slits   !

clays "!

marine clay

silty sand

Nn, e

n, e

Lumb �966!

tan $'

clayey silt N

Singh �971!

Lumb �970!

clayey silt

various

S
u

N

distributional forms: N = Normal, A = logNormal, 6 = Beta.
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Figure 4. 26 -- Constant
spatial mean gives high point
variance and autocorrelation
di s tance. 72exib l e po 2pnomi a 2
trend gives low point variance
and shor t r

distance

Figure 4.Pb -- Comparison between
spatial variation vi th high autoeorrelation
distance  above! ana 2ov autocorr elation
distance  be 2ov!.
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Estimates of Mean Sediment P~ro erties

Estimates of mean sediment properties from a finite number of observa-

tions follows fairly well known statistical results. For the case of

widely spaced measurements such that the correlation among measurements

approaches zero, simple application of Bays' Theorem yields a posterior  i e.,

after sampling! distribution on t x!, now assumed spatially constant,

f '  tI z! + f  t! L z! t!, �-2>

Owhere z =  z,...,z ! are the observations, f  t! is the prior  i.e., be-
l n

fore sampling! distribution on t, and L zI t! is the likelihood  i,e, condi-

tional probability! of z given t.

The assumption is commonly made that variation of sediment properties

0
is Normally distributed, in which case for a diffuse prior, f  t! c* constant,

the inferred posterior on t is also Normal  Table 4.5! . However, for a

broad class of distributions the probabilities distribution of the sample

mean,  l/n! E z., given t is asymtotically Normal with mean t and variance
i

is used as a proxy distribution for t.

2
ln application, the variance c must itself be estimated from the

2
observations. Since the posterior distribution of t depends on 0, irfer-

ences must first be drawn on the joint distribution f'  t,�~z!, and then

integrated over o' to yield the marginal posterior on t,

f' t! ~ l f  t,o!L z t,a!dc �. 3!

The well known result  e.g., Raiffa and Schlaifer, 1961! is a Student t

distribution on t. This result is shown graphically in Figure 4.38 for

0'2/n  i.e., the sampling distribution!, and although not correct statistically



a sample of water content measurements.

For not widely spaced observations the variance of Figure 4.28

is a lower bound. Because the observations report redundant information,

the uncertainty in the inference on t must be greater than in the inde-

pendent case. The sample mean z = Zz,/n remains an unbiased estimator in
i

the relative frequency sense, but the variance of the distribution of the

sample mean z increases to

n n

v zest! = � Z Z c[z.,z,]
2 .. i

n i=1 j=l
�-5!

each z. according to its correlation with other observations. For example,
1

adopting the linear estimate

z=Zwz,
1 i

�.6!

where 0 < w, < l.O, and Zw, = l.O; the weights w =  w,...,w J can be3. i 1' 'n

optimized to produce the smallest variance in Equation 4.5. Xntroducing

the Lagrange constraint A Zw. � l! = 0 and differentiating with respect

to w yields the optimal weights w*,

The exact increase in this variance depends on the pattern of observations

with respect to the autocovariance function R r! . For example, with the

Brent B observation pattern  Figure 4.9! and the corresponding R r!

 Figure 4.27!, the increase in variance from independent to correlated

observations is about 50%.

This increase in likelihood function variance, and therefore in

inferential uncertainty can be reduced somewhat by differentially weighting
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�. 7!

where C is the covariance matrix of the observations.

Applying 4.7 to the Brent B pattern yields the weights show in

Figure 4.29. This reduces the estimate variance by about

7.1% compared with the simple arithmetical average. Note that adding a

14th boring, with its corresponding cost, and assuming it to be independent

of the other observations, would only reduce the variance about 7.9%.*

Estimates of Autocovariance Function

Among the more important insights gained by reliability modeling in

soil mechanics is the strong influence of spatial variation of strength,

deformation, and permeability properties on physical behavior. Despite

this importance of spatial variability, the use of rigorous statistical

procedures for estimating autocovarience uncommon in present applications.

This reflects in part the mathematical difficulty of these procedures, but

perhaps more simply the general neglect of statistical uncertainty in

geotechnical analyses. This section summarizes a few of the more useable

statistical results for estimating spatial variability.

The spatial variability of physical properties will be represented

by a stochastic process Z x ,x ,x ! = Z x!, in which Z x! is a vector of
1 2 3

properties at location x in space. Individual realizations of the process

are denoted here by the lower case symbol z x! .

* Appendix 4.3 contains further discussion of optimal estimation.
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Unless otherwise noted, the process Z x! is assumed tc be second-order

stationary, in that. the mean E{Z x! } = p, variance V{2 x! } = p, and auto-

covariance function

C{Z x. !, Z x.! } = E{ [Z x,! -u] [Z x.! -V] } �.6!

C{Z x.!,Z x.!} = C {x.,x.}
3. 3 zz i

�. 7!

and obviously C �! = a2. Second, only one dimensional processes will be
zz

considered  e.g., soil properties in the vertical dimension, or along one

horizontal direction!. This, r becomes a scalar.

The spectral density function of the process Z x! is defined as the

Fourier transform of the autocovariance function

f u! = � ! e C  r! dr
l ire

25 zz
�.8!

do not depend on location. For the case of vector Z, both the variance

and covariance function are matrices, the off diagonal terms of which

reflect covariance or crosscovariance of the components of Z.

For simplicity, and in keeping with current practice, two simplifica-

tions will be made. First, attention will be restricted to scalar properties

Z, and the covariances among different physical properties  e.g , strength

and deformability! will not be considered. In this case the variance

becomes o and the autocovariance
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and is an alternative way of representing the same spatial variation.

Given a set of N evenly spaced observations of Z x!: z x !, z x !,1 ' 3+5

z x �b!, the moment estimator of the mean p of Z x! is the

sample mean  Figure 4.30! .

l
z = � Z z,

hl
�.g!

N-lQ 2 J~
V z! = � E  l � ! R  r! �.l0!

l
where R  r! is the autocorrelation function of Z x!, R  s! = ~C  r! .

zz zz a zz

This variance approaches 0 as N-+co, and thus is consistent.

The moment estimator of the process variance a2 is the sample

variance,

1V<z, ! Z  z.-z! 2 = s2
i M-1 J.

�. ll!

which is also unbiased, and to a first approximation has sampling variance

V s2$ = 20"/M �. 12!

Thus, the estimate is also consistent.

The moment estimator of the autocovariance function C  r! is the
zz

A
sample autocovariance function C  r!,

zz

where z, is used to denote z x,!, i=l, ..., 0 . This estimate is unbiased
i 1

in that E zj = U, and has variance.
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Figure 4. 80 -- 2'ypical spatial variation of soil
properti es.
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Figure 4. 81 � � Sampling bias of moment estimator
o f autocovariance function f' or one-dimensiona7.
process.
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N-r
2

Z zz, +rZ
N � Z . i i

i=1
C  r!

zz �. 13!

where r is measured in units of the separation 6.

The expected value of the sample autocovariance is

E C  r! ! = C  r! - [E z z ! -p2]
zz zz 1 1+r

C  r!
zz N-r

�.14!

where

N-1

lim Z l � ~ C  r!IrI

N r=-N+1

N-r
Z z

N-r i=1
z

1

IU
Z z

1+r Nr i 1+r i
�. 15!

N-r+5-1

E � � ~NI� v!
v=-  N-r! +l

1
C C  r!,C  r+6! !zz ' zz N-r �.lg!

This means that C  r! is only asyptotically unbiased, and in fact for finite
zz

N can be severely biased.  Figure 4.3l! .

The sampling covariances of the estimates C  r! are approximately
zz

 Bartlett, 1955!
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where

Y  v! 0 < v

v < 00

-v-6 - N-r!+1 < v < -6 �. 17!

$ v! = C  v!C  v+6! + C  v+r+6!C  v-r! + ~
zz zz zz zz v,r, �.18!

in which K 6 is the fourth order cumulant  Kendall and Stuart, 1976!v,r,6

is ignored.

These equations illustrate the difficulty of estimating autocovariance

functions. Unless the actual autocovariance is known, neither the estimator

bias nor variance is known exactly. Although this is usually the case with
A

statistical estimators, because C  r! is strongly biased for short data
zz

records, it can not be easily used to approximate either the bias term or the

sampling variances.

While the sample covariance function C  r! is at least a consistent
zz

estimator of the true covariance function C  r!, the same is not true of
zz

the sample spectral density function, in that  parzen, 1961!,

lim E e ! = � � irf  e! !irf  v! -1

N~~
�.19!

for every real number r and frequency ~. Thus,

of z., z. , z. , z, . For Gaussian processes v = 0, and in generali i+r i+v i+v+6 v,r,6
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lim Pr f  u>! !s! = e �. 20!

Because C  r! is a consistent estimator of C  r!, however,
zz zz

lim J' e f  z! ~ = f A v! f  v! �.2l!

so that for every bounded continuous function A  !

lim J' A  a!! f  u!! de = f A u!! f  ~! de �. 22!

and this weighted estimate is consistent. Thus, one can form the weighted

covariance estimator

l iru
Z e w r! C  r!

2m zzr=-~
�.23!

where the weighting function w r! has the properties,

0 <w r!  w�! =1

�. 24!

which means that asymptotically f ~! is exponentially distributed with m~an

and standard deviation f v!; f z! does not converge probabilistically as

A4



1 irv
W M! = � Z e w r!

2m r � 00
�.2S!

W -e! = W ~!

J' W <o! dv = 1 �.26!

Substituting terms leads to

m
f u!! = i W a!-u! ! I  v !

-1T 'V N V
�.27!

or

N/2
f  o! = � Z W  o-u! ! I  z !

N v N
v=-  N-1! /2

�.28!

where

E z eij"
!

1

N 27rN
�. 29!

In practice a number of weighting functions w r! have beer. used, each

having slightly different sampling properties  Figure 4.32! . As discussed

by Jenkins �961!, it is important to remove the process mean before cal-

culating C  r!  and I  e!, below! . The function w r! is called the lag
zz N

window and N the lag number. The spectral window W M! corresponding to

w r! is found by taking the Fourier transform,
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also be found from

l . 2 . 2
I  e! = �   Z z. cos a>j! +   Z z. sin mj! �.30!'N 2'IrN, l j 3j=l j=l

This estimator �.28! is called the smoothed periodogram estimator.

Since the latter two estimators for f w! are mathematically equivalent,

they share identical sampling properties. In particular,

+M

E f   d! ! = � E w ~! f  ~!N j j j
�. 31!

where 2M is the width of the window and the variance is, without loss of

generality, taken to be c =l. If f ~! does not vary greatly within

 j-M! < v <  jtM! Figure 4.3.3,

2
V f M! ! "- ~ I ~  m.! f  ~.!N, ' j

�. 32!

The estimator f u>! can be shown to be approximately X distributed

with the equivalent degrees of freedom  Koopman, 1.974!

E   ~!!

>if  ~! !

�. 33!

which varies with the window chosen  Figure 4.34! . This allows conii-
A

dence limits on f  o>! to be constructed and hypotheses on goodness of fit

to be tested.

is the so-called periodogram of the data z., j=l, ..., N.; Note, I   ! can
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Figuz'e 4. 33 -- Variance and equivalent degrees of
fz eedom for var ious common urindovs  taken fr om Jenkins,
2982!.
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Figur e 4. 34 -- Various common vindoars corr espondi ng
to those o f figure 4. 33  taken f'r om Jenkins, 7962! .
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where A is the region within the sediment most influencing the behavior

being predicted; g�y 3, g�y ! are the influences of changes in the1 ' 2

sediment properties at locations x and x or the prediction g  k; and
� 1 � 2

C  ~ ] is covariance.

This optimization confirms intuition. More weight is given to obser-

vations when they are  i! independent of other observations,  ii! in loca-

tions to which the prediction is sensitive, and  iii! corzelated with

nearby locations to which the prediction is also sensitive.

Measurement error

y = y +b+
0 �. 37!

where b is the  known! bias and u is a zero-mean random variable with

Sediment properties aze difficult to measure without introducing bias,

both because the instruments or procedures of measurement disturb the sedi-

ment structure and because many measurements are made through correlations

with index properties. These correlations are partly theoretical, partly

empirical, and change from one sediment profile to another. Much effort

has been addressed to these bias errors throughout the history of modern

soil mechanics  e.g., Ladd, 1976! .

From a statistical point of view measurement errozs are divided

into a systematic or bais component and a random component  Figure 4.35!.

If the magnitude and. direction of the systematic ezror is known, measure-

ments can be directly calibrated. Thus, the only uncertainty remaining

is the random one. The model for observation y of source property y
0

becomes
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Figure 4. 88 � � Systematic bias in measurement
of soi 5 properties. Above schematic description
o f bias and random measur ement error; be'Lov
data from Lamb �972! shoving systematic di ffer-
enoe betveen strength measured vith fieLd
and Eaboratori~ vanes.
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2
variance V . Table 4,5 shows various biases and random errors reported

u

in the literature for common measurements of sediment properties.

The situation is seldom so simple, of course. Usually b is not known

with certainty, but only up to some probability distribution with mean b

2 2
and variance cr . Then, the error in the measurement has variance � +,U !.

b u 'b

Prom the point of viewof statistical modeling this characterization ade-

quately reflects the measurement uncertainty, even if one is uncomfortable

about grouping uncertainty over an unknown bias with "random" fluctuation.

In fact, though, any such separation of measurement error is artificial

since it is conditioned on the level of detail of the model for measurement

error,and on the extensiveness of the data base from which the calibrations

are taken. Restricted data bases tend to show more bias and less random

error, and the reverse for broad data bases. Reported variances like

those of Table 4.5 already confound variation in bias across different

sediment formations with random variation. A consideration that must

2 . 2
always be faced in grouping 0 with 0 is correlation in the realized

b u

errors across the observations z. If b is systematic, as assumed, then its

realization will be the same for all observations within the same sediment

mass and the model

y=y+b+u+u
0 �.38!

The introduction of random measurement error increases the variance

of estimates of mean sediment properties and of the autocovariance function.

For point estimates of the mean with widely spaced observations,

2
where u >N�0 !, will systematically over or under estimate all observations.Pb I
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PropertyMaterial COV Source

Lumb �!
Clay 5.9

4+

11. 4

0. 5+

26.4

Clay Shale
94. 8

Cohesive Till

"undisturbed"

compacted

Morse {I!Various Tills

Silt e 0

n e 0
n

Gravelly Sand

Coarse Sand

Medium Sand

Pine Sand

n e 0
n

e
0

e
0

Continued...

Table 4. 5 -- Reported Coeff icients of Variation

Liquid limit
plastic limit
clay content
specific gravity
dry density
cohesion {direct

shear, DS!
friction coef

ficient  t!, DS
c -- DS

t � DS

c � triaxial D

t -- triaxial D

c � CU

t -- triaxial CU

c � triaxial UU

t -- triaxial UU
c--D

t � D

c � CD

t � CD

c � UU
t -- UU

UU

for Various Soil Properties
J

45. 6

103.3

17.7

13.5

1.6

19 ' 9

9.8

18. 8

22.3

24. 0

2.1

26. 9

6.8

25.5

5.4

14.8
14.7

31.0

19.8

29.0

21.6

89.4
29

16

9.8

16

10

17. 5

13;3



Material Source

Singh �!

COV

Marine Clay
London Clay
Sandy Clay
Silty Sand
Clay Silt.

Clayey Silt
 soaked!

Clayey Silt
CH

CL

CH

Plastic Clay

Fine Sands

Gravel-Sands

Coarse Sand

5 to 13
.5

8 to14

l. First ICASP, Hong Kong.
2. Second ICASP, Aachen.
3 ~ Third ICASP, Sydney.

Table 4.5 � Continued

Ottawa Sand  loose!
Ottawa Sand  dense!
Clayey Silt

 unsoaked!

CL

ML

Road Subgrad.e

Average over
16 cohesive soils

Road base coarse

c

c

log C !
t

t
c

c

phi
phi
c

phi
s

u
c

phi
S

u
c

c � triaxial UU

phi � UU
c � UU

phi � UU
c � UU

phi � UU
c � DS

phi � DS
c � DS

c � DS

soil suction

soil suction

LL

PL

CBR

density
PI

S
u

compression ratio
t

t

t

t

18.4

16.2

34.2

13.8

14.8

31.6

25.9

14

12.5

51
22

19

55

29

20

64

15

56

22

19

71

12

63

lo.4

3

2.5

24.2

23.2

6.37

9.55

17.4

3.9

15.0

36. 8

17 to 38

Miura and Fujita �!

Minty, Smith and
Pratt �!

Ingles �!

Vanmarke and

Fuleihan�!
Schultme �!
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Equation 4.1Q becomes

2 2
6 + 0

V [x] �.39!

2
where o is the measurement error variance. The effect on estimates of

m

the autocovariance is to reduce correlations among observations and to mask

 hence increase the sampling variances of R r!!. Nevertheless, procedures

for estimating this error are available for regularly spaced observations.

Recent work by Veneziano  l9xx! extends available techniques to include non-

uniformly spaced observations.



high
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4.3.4 Mapping the Distribution of Bottom Sediments

One of the most difficult problems in site investigation to quantify

is the uncertainty in qualitative distributions of sediments types, for

example in mapping or in reconstructing profiles. As illustrated by Figure

4.17, this is a highly inductive task, based on familiarity with geological

.processes and history, and previous experience. Except by returning to

previous cases and comparing predicted with actual distributions, error's in

the intuitive contouring of sediment bodies are not immediately analyzable.

Unfortunately, since even with past projects one never knows the true dis-

tribution of sediments, this is not possible.

On the other hand, errors in contouring sediment masses can be

estimated for fmed classification procedures, if certain assumptions of

randomness are made on the geological process of sedimentation. For

example, if the sediment mass is contoured by nearest neighbor classifica-

tion  i.e., any unobserved element in the mass is assigned to the same

class as the nearest observation! and if the sediment mass is considered a

discrete random field, then estimates of percent of area misclassified and

the like can be made.

Following Switzer �967! the spatial distribution of sediment-type--

i.e., zoning � can be considered a discrete correlated random field. In

the two class case, or the so-called two-co].or map, a zero-one variable is

associated with each point in space; zero if the sediment at the point is,

say, clay and one if it is, say, gravelly sand. Then this random field

is used to predict the class at unobserved locations, or to select optimal

observation patterns.
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Figure 4.88 -- Typicql nearest neighbor
map for two-c lass prob lem.

1.0

Pq

0

Pj

0
distance

Figure 4.89 -- Decay of probability of class
similarities or 8issimi larities as a function
o f di stance.
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Probabilistically, if the classification at some point  x ,y ! in
0 0

the horizontal plane is material i, then the probability of material i at

some point  x,y ! must approach 1.0 if the points are spatially close,

and decay to the average fraction of material i, p., as the separation
1

increases. A simple model is of the type

P..  r! =  l-p,!e + y
i,i � i

�.40!

where P. . r! is the probability of material i at some  vector! separation
ill

distance r given that the original location is of material i. Zf P. . r!
i 1

depends only on r and not on  x,y !,  x,y ! then the field is said to be
0 0

stationary. If P..  r! depends only on the sealer separation r, and not
i~1

the vector r, the field is said to be isotropic.

an indication of the distance to which classifications can be extrapolated

away from an observed point. The smaller the average zone size and the

less smooth the boundaries among zones the more quickly P. . r! decays
iqi

 Figure 4.37! .

How consider that observations of class at some finite number of

points n are made, and that a sediment map is constructed using a nearest

neighbor criterion  Figure 4.38! . If an observation is of class i, then

the probability of misclassifying a point at nearest neighbor distance r is

P, .  r! = $1-P..  r! !. Similarly, if an observation is of class j, then
i@1

the probability of misclassifying at point at nearest neighbor distance r

is P..  r! = �-P ..  r! !. For the two color case these functions are
i gj jij

shown in Figure 4.39. If f  r! is the density function of nearest neighbor

P. . r! is uniquely related to the autocovariance through the relation
igi

2R r! = p.p.,  r! � p.. The decay in probability reflected in P..  r! is
1 l~l 1 1qi
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O.Z0.1

NEAREST NE IGHROR DISTANCE  NORMALIZED!

Figure 4.40 -- Sea>est neighbor ais0ances for square and
wandom point obser vation grids as a function of sampling
densi tp  number's per uni t ar ea! .
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spacings in the plane  or space! then the fraction of the constructed map

misclassified is

J = p.   f r!p,,  r!dr + p. f f r!P, .  r!dr . �.41!
l j il i,j

where p. + p. = l.O.
3

For random observation points Poisson distributed in the plane the

neareast neighbor spacing is easily shown to be

2
f r! = 2ngr exp -glr !, �.42!

the criterion of their genesis is not specified.

To test the classification theory, eight soil maps from extensively

mapped regions were selected and used as base cases  e g., Figure 4.43!.

The two-color distributions of sediment type as mapped were considered to

be the true conditions, then observation points were randomly generated and

nearest neighbor maps constructed from the results. Observation points were

generated in Poisson fields, and in square and hexagonal grids. In total

where X iS the Spatial denSity Of pOintS  Figure 4.40! . Similarly fOr

square and hexagonally grided observations, f  r! can be shown to be as in

Figure 4.49. Therefore normalized charts can be developed to predict percent

misclassified  Figures 4.4l, 4.42! . For other given observation patterns

 e.g., Figure 4.43! the percent misclassified can be estimated once f r! is

determined. However, such patterns do not allow normalized charts since
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Figur e 4. 4Z -- Tgpiea7. baae map for study of error ratee in bottom
eediment mape.
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l20 test maps were constructed of the eight base cases. For each test map

the percent misclassified was predicted from Figures 4.41, 4.42 and the

actual misclassified area planimetered. Results are shown in Figure

In general, the predictions of' the theory seem accurate, and lead4.41.

n. n>
P i} ~p. J[P,, r ! H P.. r !

ab 1 3,i b
�.43!

to surprisingly large misclassified areas. Misclassified areas from 30 to

50 percent of the total map are not uncommon.

Several limitations of the present approach to mapping errors and of

the experiments intended to verify the theory must be mentioned. First, the

theory assumes no structural influence on the distribution of sediment types,

and no geological information to aid the mapping. The distribution of

sediments is assumed either to be or to behave like a random process The

base case maps were selected to display isotropy of sediment distribution,

and therefore might be expected to be of areas with little structural

control. Nevertheless, these base cases do display apparently random dis-

tributions.

Second, the results of Figures 4-41, 4.42 give no indication of the

spatial distribution of misclassification, and the one measure "percent

misclassified" is difficult to relate to risk analyses or design decisions.

Zn fact, the misclassified areas occur as belts surrounding homogeneous

zones, so that the probability of misclassification near the middle of zones

can be very low. Although not contained in the present work, the probability

of misclassification at a point can be estimated by considering the classifica-

tions of surrounding observations  Figure 4.45!. By Bayes' Theorem,
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where P i! is the probability of the point in question being class i. n is

the number of neighboring points of class i, and r , a=1,...,n. their

respective distances; and simlarly for n, and r . This procedure can be
j b

used to develop an entirely probabilistic map, if so desired  e.g.,

Baecher, 1972!.

In the case of the base maps the decay parameter Y is precisely known

because the true map is known. In normal problems of inference this is not

the case. All that is known about the site is the observations. Therefore,

Y must be estimated from them. In principle this is easily done, but given

the form of Equation 4.40 applications are more difficult.

For a set of observations the likelihood can be expressed by consider-

ing all pairs of points,

�.44!

n., n..
11 13

L data~y,p ! = II P..  r ! II P;, r !
1 ii a ija

a=1 a=1

n n..
ji 33
II P.. r ! II P.. r !

j i a j,i a
a=l a=l

where n,, is the number of pairs of observations comprising two i classes,
i1

and respectively for n, n, and n... This can be maximized with respect
13 31 33

to y and p. to obtain the maximum likelihood estimates, or can be used with
1

Bayes' Theorem to infer a posterior distribution on  y,p,! . However, the
1

form of 4.44 leads to a high order polynomial and thus the solution must be

by enumeration. Because p. can be estimated from the fraction of observa-
1

tions of class i, the enumeration can be reduced to one dimension, but. is

still inconvenient.

A less satisfying procedure is to divide the distances between paired

observations into intervals and for each interval evaluate the relative fre-

quencies of ii to ji pairs, and jj to ij pairs. Since P, . r! + P. . r! = 1.0,
1 Ii 3 ~1
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Fi gure 4. 44 -- Optimal mapping using Bapesian
estimate of c2assification at unobserved locations.
Estimate based on joint 2ike2ihood of observations
at distances r, r ~, ..., r given c2assification
o f unobserved  ocaKion.
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and similarly for jj and ij pairs, there frequencies can be platted and

curves fit to them to estimate y and p.. The procedure works, but the
1

sampling variation of the estimators is difficult to untangle. Other pro-

cedures are discussed in Nucci and Baecher �979!.

The conclusion ta be drawn from these analysis is that errors in

zonation maps can easily be in the range of 30%, and possibly more. The in-

fluence of such errors on risk estimates is difficult to judge, except in

quite specific problems. For examp1e, in estimating unbalanced moments on

the skirts of a North Sea structure Tang �979! has brought up the problem

af uncertain zonal boundaries. For such a problem the current analysis has

direct application.



4.3.5 Finding Anomalous Details

This section is a review of current techniques for analyzing the

search for adverse geological details, for optimizing allocations of effort,

and for drawing inferences from the results of search programs. No attempt

is made to redevelop mathematical foundations presented elsewhere, rather,

emphasis is placed on assumptions and applicability.

The problem of search in geological exploration is to locate or

detect a geological anomaly of particular, although perhaps probabilistic,

description in an efficient way, subject to some initial probability dis-

tribution on its location and possibly in the presence of "noise" or uncer-

tainty in interpreting field data. The problem of search strategy is how

to allocate effort such that the probability of finding the anomolous

conditions is minimized at a cost commensurate with the consequence of not

finding it. Typical targets of geotechnical search include solution

cavities, clay lenses, buried stream channels  e.g., high permeability zones

beneath dams!, abandoned underground workings, geothermal resources, mineral

aggregate sources, and faults. Terzaghi's  l929! classic definition of

minor geological details as, "features that can be predicted. neither from

the results of careful investigation... nor by means of a reasonable amount

is expanded here to include features of somewhatof test borings

larger dimension and probability of detection.

Investigation for geological details or anomalous conditions must

start with a suspicion that such conditions exist, what they might be like,

and which locations  if any! are more likely than others These are judge-

mental evaluations based on experience and knowledge of geology. Search

theory is a tool by which these initial suspicions can be logically combined

with field observations to draw deductive conclusions



The basic model for search in geological and geotechnical exploration

idealize* anomalous details as randomly located point targets with an

associated size and shape distribution. For example, clay lenses might be

modeled as ellipses in the horizontal plane, the centers of which form a

Poisson or Negative Binomial point process, and the size of which is

distributed, say, logNormally Similar distribution assumptions would be

required on obliquity and orientation. While insulting the geologist by

simplicity, such models seem to adequately approximate the spatial character

of many geological processes. Confirmation of this model has been provided

by, among others, Kaufman �963! for oil pools within individual plays, and

by DeGeoffroy and Wignall �970! for metallic mineral deposits. Nevertheless,

the model is not a good representation for all geological entities, which

must be kept strictly in mind. Within the past ten years substantial data

have been collected on statistical properties of geological processes,

particularly spatial characteristics. Much of this literature is summarized

by Agterberg �973! . Many, perhaps most processes and formations in geology

seem to follow well behaved distributions which are fairly consistent across

different geological environments.

Uniform search

Let f x,y! be the density function  pdf! of target center location in

the horizontal plane. If no information exists on location, f x,y! will be

taken as uniform, and the optimal spatial allocation of effort will also

usually be uniform. Uniform search will mean that, a priori, each infin-

itesimal element of the site has the same probability of containing an

observation. In geotechnical exploration uniform search means grids.
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Point grids

Random allocation is a baseline for the performance of grid patterns

of search. Consider a search strategy that randomly allocates observations

independently and with equal probability to each infinitesmal element

of the site. For a target area, A assumed known, and a site area A, the
t s

probability of hitting the target with any one observation is A /A . Thus,
s

the probability of hitting the target with one or more of n observations is

Pr find/n! = 1 - �-A /A ! = 1 � exp  - n A/A ! ! �.45!
n

t s s

when A /A < 0.2  Figure 4.45! .
t s

Points grids are search strategies that allocate observations at.

regularly spaced points according to some prespecified geometric pattern.

Typical of such strategies are evenly-spaced boring arrays. Such strategies

are so common in geotechnical engineering that over the years empirical

rules have been developed for selecting appropriate spacings  e.g.,

Hvorslev, 1949! . Grid patterns assure coverage of a site, are more effi-

cient than random strategies, and offer computational advantages when

analytically treating other facets of exploration such as mapping.

The probability of intersecting a target with a point grid depends

on the relation between two sets of factors: the size, shape, and

orientation of the target; and the spacing, geometry, and orientation of

the grid. Because grids are periodic, their performance characteristics

can be analyzed with reference to an individual cell  for uniform f x,y! ! .

The conditional probability of finding an existing target is determined

by the fraction of the cell area in which, if the target center lies, at
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�.46!E k! = m A /A !
t c

where A is the area of the unit cell. For Pr k > 2! = 0, the expected
c

number of hits is the probability of a find. The target. size for which

the condition of only one possible hit holds depends both on the target and

grid shapes. The second conclusion is that for regularly shaped targets,

precise target shape at a given obliquity has little affect on probability

of a find. The last conclusion is that for MA /s below about 0.7, target
t

obliquity has little or no effect on the probability of a find.

Extensive tables of grid search probabilities have been computed by

Singer and Wickman �969! and Savinskii �965! . There are inconsistencies

least one observation will hit the target. For the case of rarrdom target

size, orientation, or shape  within a family of shapes -- e.g., ellipses!,

probabilities of a find are obtained by integrating over the joint

density function of these variables. Representative results for square

and circular targets on square grids are shown in Figure 4.46 compared

with random allocation. Results for elliptical and rectangular targets

of various obliquities  i.e., ratios of dimensions! are shown in Figure 4.47

and 4.48. Elliptical targets with triangular  so-called hexagonal! grids

are given in Figure 4.49.

Several conclusions are apparent from these figures. First, for low

probabilities of a find, target and grid shape are unimportant. This has

been shown by Santalo �976! for the more general case of any bounded  not

necessarily convex! figure. If the number of observations per unit cell is

m, the expected number of hits, k, is



- 138�

CV
IH

O cd

4
cd

tg

cd

8
4I

cd
Cl

cd

Ido

O

O

CD

CV

O

aCV

O O O O O

pu79 e SCj Xi7't3qeq.ozd

O cd
~ 4l

~ 4 ccj

CIIC

CO

O

O CI

O 4l
dj

Cj
'pl

CD

Cd
4J

o
dl

cv cd

O 4J
4I
C4

ca
4J

O

CO % + c4 O

O O O O O

P'63$ B $0 X/3$3oegogd

O ~

Cd

~ a
O dj

5
dj

O
4l

cd
P4

~ Q
O dl

OO
cd
4J

O ~



� 139-

between these two tabulations. The former, apparently checked in light of

these inconsistencies, would seem more reliable. Two issues of strategy

may be concluded from these tabulations: The orientation of the long axis

of a rectangular grid maximizing the probability of a find is parallel to

the preferred orientation of the long axis of the target; and the grid

obliquity maximizing the probability of a find is approximately equal to the

target obliquity.

Geophysical exploration tools are commonly allocated in line grids.

Making the simplifying assumption that a find  or tentative find! is

recorded if one of the lines transects the target, charts like those for

point grids can be constructed using the same approach  Figures 4.50 and 4.51! ~

Although the assumption of only direct intersection resulting in a

find is simplistic, in many applications the approximation may be suffi-

ciently accurate. If this approximation is not sufficiently accurate, a

lateral detection function  LDF! may be introduced, relating probability of

a find to the minimum lateral distance between target and grid line As

this distance increases, the probability of detecting a target diminishes.

Common LDF's are shown in Figure 4.52  see Morse, l974! .

Introduction of a LDF leads to detection probabilities other than

zero and one for certain fractions of the unit cell. The probability of a

find is obtained by taking the expectation over these areas. Typical re-

sults, here for an exponential LDF with fixed range b/2, are shown in

Figure 4.53. The rate of decay of the LDF, perhaps more than its exact

form, can significantly influence the probability of a find in certain

circumstances. Information of the LDF for a particular exploration tool and
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target type would have to be developed empirically, or estimated by

physical reasoning At present such information is difficult to obtain.

Inferences from uniform search

In the single target case, the probability of an undetected target

after a search has been made is

p ~ p [1 - p  find/search allocation!]
0

r �.47!

0
where p and p are the prior and posterior probabilities  Figure 4.54! .

The dependence on prior probability is obvious.

For multiple targets the states of nature on which inferences are

drawn are the parameters of the assumed distribution models for number and

size  inferences on the size distribution of a single target would be made

in the same way!. A computational difficulty arises because number and

size, even if independent a priori, are dependent in the likelihood and

thus in the posterior distribution. This means many posterior distribu-

tions must be solved numerically.

Consider only the number n of targets as a random variable, with

target size known. Prior information is encoded as a probability distri-

bution over n. This can be done by assuming the targets mutually inde-

pendent, in which case n is a Poisson r.v. with density parameter A.*

The density parameter can be estimated from regional frequency data, if

available, or subjectively. Alternately, ! can itself be considered un-

certain, a pdf assessed over it, and a compound Poisson distribution used for n.

~Work in mineral resource modelling seems to indicate that the Negative
Bionomial distribution  i.e., clumping of targets! is a better assumption.
Whether this applies to geotechnical details has yet to be investigated.
See e.g., DeGeoffroy and Wignal �970!, DeGeoffroy and Wu �970!, or Uhler
and Bradley �970! .
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Let the intensity of exploration be such that the probability of

finding any one target is p , then the posterior mass function  pmf! of

number of targets when m is found are

n
em> -A! I m m n-m

p  n m,p !
f n! n f

p  I-p!
f

�. 48!

I m- l m n-mP   mPf! l Pf  l -Pf! �.49!

which is the Negative Binomial pmf -- a convenient result. Moments of n

are;

E[n] = m/p, and Vfn] = m l � p !/p 2

Expected number of targets increases with the number found and decreases

with the search e f f icacy.

With both number and size are r.v's p is no longer a constant. If the
f

distribution of target size, b, is assumed to belong ta some family of

distributions f bIB!, where B denotes the vector of parameters of the

distribution, then

[Were X considered the r.v. rather than n, updating would be by the likeli-

hood of A and p  n! found by integration.]

When no information on n exists prior to exploration either a uniform

or non-informative distribution might be used. For variables with range

[0,~! the non-informative prior is usually taken proportional to l/n  see,

e.g., Jeffreys, l960!; prior ignorance is a controversial topic, however.

Adopting the non-informative prior,
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where p is the probability of the search program finding a target of

size b.

noise. What first stage spacings should be used, and what anomaly magnitude

6 should be investigated'?

*In other applications two-stage search has been investigated by Allais
�957! and Slichter �955! for mineral exploration, and by Stone, et al.
�972! for naval salvage.

In geotechnical and geological exploration two stages searches are

common. These usually comprise an inexpensive, but imprecise screening

stage like seismic refraction, with a more expensive but also more pre-

cise follow-up stage, like borings."

Two-stage search with false targets  i.e., a noisy first stage! can

be approached from several perspectives, and universal optimizations are

difficult to formulate  Stone, 1972! Precise modeling depends on the

operational strategy for selecting second-stage allocations  i.e., which

anomalies are drilled!. Optimization criteria are difficult because the

amount of effort allocated in Stage 2 is usually a random variable depending

on the Stage 1 outcome. For specific problems it is sometimes easier to

specify a loss associated with missing targets and minimize total cost,

than to maximize expected numbers of finds subject to stochastic constraints.

Consider the following example: Targets are random and independent

with size distribution f b Q!. Some geophysical tool is allocated on a

parallel line grid, and every resulting anomaly greater than magnitude A is

drilled. As the threshold magnitude ~ is decreased the detection probability

increases, but so does the number of false target indications caused by
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This is difficult to express as a constrained optimization but can

easily be expressed as an expected cost minimization, if the cost of

missing an individual target is specified. Let the regional frequency of

targets be X, and the detection probability be related to 6 as

p � 6! ~ exp -uh! . Similarly, for Gaussian noise the number of
r target

2
level crossings above h is Poisson with density X h! ~ exp -gA ! . The

expected cost is a linear function of the expected number of missed targets

and the expected stage-two exploration cost  Figure 4.55! .

1t should be noted that two-stage optimizations are possible, although

more case specific than other techniques discussed here. As in the example,

this modeling often requires the assessment of many parameters, and is

therefore subject to noise of its own The most difficult parameters to

assess may be the "costs" of missing a target, as the exact relation between

exploration inferences and design decisions is difficult to identify

Non-uniform or o timal search

If the prior distribution f x,y! is non-uniform, the optimal alloca-

tion of search effort is also non-uniform. While formally optimized non-

uniform allocations of effort are not common in geotechnical exploration,

they have received attention in operations research, and have been applied

to problems of mineral and oil exploration The most well known optimal

search allocations are those due to Koopman �956!, which bear his name,

and the extension due to deGuenin �961! . The theoretical development of

these techniques is readily available in the literature  e.g., Morse,

1974; Stone, 1972! and need not be repeated here. In essence optimal non-

uniform allocations reduce to investing more effort where the target is
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likely to be, and less where it is not. Depending on the situation, no

effort at all might be allocated to regions of the site with low or even

modest probability of containing a target.

The so-called detection function of an exploration tool plays a

central role in non-uniform search. The detection function is the condi-

tional probability of detecting  i.e., recognizing or finding! an existing

target  i.e., conditional probability! as a function of the amount of

search effort allocated to where the target is. While this would seem to

have little meaning for borings, on closer inspection this is not the

pr[find at x,y!target at x,y; $ x y!]

D[g x,y!]

= 1 � exp[ � g x,y! ] �. 52!

where  x,y! is the amount of effort allocated to  x,y! .

Optimizing,

pr [find] =   I D [$  x,y! ] f  x,y! dxdy
x

�. 53!

subject to the constraint

case. First of all, the probabi1ity of detecting certain details in borings

is not 1.0  e.g., faults! . Secondly, one could think of borings not as

individual entities but as a spatial density, in which case a detection

function might look like Figure 4.47. For other types of exploration tqols

like geophysics or field reconnaissance, the detection function is more

readily modelled as,
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$ x,y!dxdy
x y

where 'P is the total effort, leads to a simple graphical solution for the

spatial allocation of ef fort  Koopman, 1956! . In geotechnical practice

the exponential saturation function is often inappropriate  Baecher,

1972!, but deGuenin �961! extended Koopman's results to any detection

function displaying diminishing returns. For the latter optimization

there is also a fairly simple graphical solution. Given the present

availability of computers and programmable calculators, numerical solution

is equally convenient.

DeGuenin's primary result is that the optimum spatial allocation of

effort satisfies the condition

f x,y! D[$ x,y!] = A = constant
3$  x,y!

�. 55',

Based on this property, the graphical procedure for obtaining the optimal

$* x,y! is;

f x,y! > l/D  o!

STEP 2: Limiting discussion to detection functions for which the derivative

with respect to Q x,y! is continuous, an inverse function

STEP 1: Select the initial value of ! and evaluate the quantity L/D  o!,

where D  o! is the derivative of the detection function evaluated

at f x,y! = o. All points at. which $  x,y! > o satisfy the condition
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�. 57'

exists. From A and f  x,y! and Equation 13, determine and graph

$ x,y! .

STEP 3: Vary A until the area under Q x,y! equals the total effort

The resulting distribution $* x,y! is optimal.

If the importance of finding targets is different in different loca-

tions of the site, a utility function defined over the site can be intro-

duced. The optimal condition becomes that of maximizing expected utility,

which is mathematically similar to maximizing probability of a find, with

f x,y! replaced by f x,y! u x,y!. In either case, the probability of a

find  or expected utility! is an immediate result of the graphical solu-

tion, as is the posterior pdf of location.

Clear1y, the optimal allocation depends on the prior pdf of location,

which in most cases is subjective and poorly defined. However, the alloca-

0
tion depends on f  x,y! only through the logarithm, and is therefore

insensitive to minor imprecisions in the subjective assessment. The prob-

o
ability of a find, and the posterior distribution depend linearly on f  x,y!,

however, and are more sensitive to imprecisions The allocation derived

by such optimizing procedures is for search effort defined continuously

in both space and magnitude. Geotechnical tools are usually discrete in

space, and therefore must be tailored to approximate the optimal solution.

Nore work is needed on rules for making such approximations, and their

affects on probability of a find.
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S~eceetial search

Xn a sequential procedure the pdf of location is updated a.fter each

observation. In certain cases sequential procedures increase the prob-

ability of a find because observations are made on the basis of all

available information." At least four criteria of optimality might be used

for sequential search: minimizing of expected amount of effort to find

a target, maximizing the probability of finding a target with a given

amount of effort, minimizing the conditional probability of an undetected

target after a fixed amount of effort has been expended, and. minimizing

the expected amount of effort required to reduce the probability of an

undetected target to a fixed level. Fortunately, each criterion leads to

the same optimal sequence of observations  Baecher, 1972! . The optimal

strategy is myopic, at each stage the next observation is allocated such

that the ratio of incremental probability of a find to incremental cost

is maximized. Again fortunately, search is one of the few problems in

sequential decision making for which myopic strategies are globally optimal

 e.g., DeGroot, l970!. Cmf's of the number of observations to a find can

be computed by enumeration, as can the cdf of cost, if spatially variable.

Sequential search procedures, aimed at finding minima, maxima or other

properties of a continuous or trending field  e.g., the maximuri depth of

soil cover!, are analyzed with techniques differing from the present ones

In continuous field cases spatial characteristics of the field are used to

locate observations. Thus, observations are not independent of one another.

*In the special case of sequential non-uniform search with discrete stages
of spatially continuous effort, sequential search can be shown to have no
advantage over single stage search  Koopman, 1956; deGuenin, l96l! .



While not discussed here, these problems are frequent in non-linear pro-

gramming and related disciplines, for example, Wilde  l964! treats strategy

optimization for deterministic surfaces. Veneziano and Faccioli �975!

treat special problems in strategy optimization for Gaussian' random fields.

In sequential search as in one or two-stage searches, optimal stop-

ping rules can be determined by straight forward decision theory

techniques.

4.4 Nagnitude of Errors in Site Characterization

Based on the above discussion of sources of uncertainty in site

characterization, the following is concluded. The COV of averaged sedi-

ment properties for design due to spatial variation, statistical uncer-

tainty, and random measurement errors should be expected to be about 30%

and could rise to 50%. This does not include bias introduced by the

procedures of measurement. The error rates in maps of sediment distribu-

tion defined as precent misclassified is expected to be on the order of 25%,.

Except in special applications, however, these errors are less important

than those of parameter estimation due to spatial averaging Finally,

given the assumed regional frequency of clay-peat channels are typical

exploration programs, the probability of an undetected anomaly is less

than 1% and its expected horizontal diameter is about 4m.



- 151

~Aendix 4.3

istic model g y x! !, where y x! is the realization of the random field in

the space influenced by the platform, and if in the modeling y x! is
A

replaced by an equivalent deterministic  i.e., uniform! parameter y,

then the estimator z for y can be optimized to minimize the variance of

the prediction

min E [  gfy  x! ! - g/y!! ]
2 �. 34!

Replacing y by Zw.z. and taking a Taylor's series expansion of the
1 i

variance of g y!about its mean  i.e., g y I  x! ! assuming g  ~ ! is linear

yields differentials of g[ ! with respect to the sediment properties.

Again assuming g  ~ ! linear, these differentials of the function become

functions of the differential, and setting the derivatives with respect to

w equal to zero yields,

�.35!

The influence factors I' = I',...,~ are, respectively,
l n

�.36!I . = j J f by !g dy j C[y ,z,] + C[y ,z.]!dA dA
A A

The linear estimate z = Zw.z. presented in Section 4.3, is optimized
l 1

to minimize the variance in estimates of the spatial mean t. However, if

the use to which the inference is to be put is known, more appropriate

criteria of optimality can be selected. For example, if the purpose of

the inference is to predict the behavior of the platform through some meehan-
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5. GEOTECHNZCAL MODELIHG

It is often said that two things distinguish soil mechanics

from other branches of civil engineering: uncontrollable material proper-

ties and poor mechanical models. Yet the magnitude of modeling error is

seldom quantified. In this section geotechnical models of stability and

deformation are considered, to estimate the magnitude of uncertainty in

predictions of behavior deriving from parameter uncertainty and model

inaccuracy.

For both types of models empirical data analyses have been made

to compare the predictions of simple widely used formulae with observa-

tions, and analytical approaches have been developed to assess the in-

fluence of spati.al variation of bottom parameters. Together, a first

estimate can be made of the combined uncertainty of predictions.

A limitation of the present analyses is that they focus primarily

on static behavior, whereas dynamic wave loading is an important concern

offshore. While limited attention is paid to dynamic analysis in

Section 5.4, the empirical record against which to compare dynamic pre-

dictions is poor and fundamental mechanisms of soil behavior under

dynamic loading are poorly understood  e.g., liquafaction under wave

loading!. Thus, quantified conclusions on the uncertainties of predic-

tions of dynamic preformance are in large measure speculative, and must

be extrapolated by what we know of uncertainties in predictions of static

performance. This is a limitation of current practice which a formal

analysis of uncertainty can do nothing for.



5.1 Epistemology of Modeling*

This section reviews the logical basis of modeling and the sources

of uncertainty in model predictions.

5.1.1 Logic of Modeling

Models can be viewed from a syntactic, semantic, or pragmatic perspec-

tive. Less precisely, a model can be thought of as exhibiting relationships,

truth, or usefulness. The distinction between syntactic and semantic

models is exclusive, while either may also be pragmatic.

The view adopted here is the syntactic, as summarized in Tarsky's

�961! definition of a model as, "...a possible realization in which valid

sentences of a theory...are satisfied...." By this definition both a

mathematical  or symbolic! construction and reality itself would be said

to be models of a chosen theory. The theory is "a linguistic entity con-

sisting of a set of sentences" and is correct if internally consistent

according to the rules of mathematical logic  e.g., Suppes, l96l!. A model

then is any set of objects and relations among or operations upon them

which conform to the theory.

Among models of the same theory certain isomorphisms exist, and these

isomorphisms are used to infer the behavior of one model from that of

another, even though there may be no interaction among models. While the

view is syntactic, it would appear pragmatic as well. From the pragmatic

view the central questions are, is reality a model of the chosen theory,

and what is the extent and character of isomorphisms between reality and

other models of the same theory?

~ Work leading to the discussion of Section 5.1.1 has not been funded
by Project SeaCrant.
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The semantic view that models are correct  true! or exact representa-

tions of reality can be rejected almost a priori. However, it surfaces

implicitly in hypothesis testing approaches to model uncertainty, and is

therefore not without apparent adherents  Section 5.1.4! . In the decision

context models are used not because they are correct, but because they

allow better decisions to be made  e g., Veneziano, 1976!. Models of

ground deformation are neither right nor wrong, and neither true nor false.

Predictions of reality based on model results reflect subjective opinion

on the degree to which reality and the mathematical construction are both

models  in the syntactic sense! of the same theory, and on the isomorphisms

between reality and the construct. In application, a mathematical model

is not constructed fran reality itself, but from a chosen theory which

reality is thought to satisfy.

A model, whether reality or a mathematical construct, comprises a

rich variety of interrelational properties, some of which exceed the

requirement of satisfying the valid sentences of a chosen theory. While

isomorphisms among models of a given theory reflect the common inter�

relational properties they are constrained to exhibit, isomorphism may not

extend to those interrelational properties not constrained by the theory.

Therefore operations on a mathematical model may exploit properties which

reality does not exhibit, and lead to conclusions that cannot be trans-

ferred

Paraphrasing Ackoff �962!, we assign numbers to events and objects

because they have interrelational properties that are well understood,

and these interrelational properties can be used to deduce conclusions

that were not otherwise apparent. Numbers, however, have interrelational
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properties that events and objects may not share, and thus the deduced

conclusions may not apply to reality.

These comments lead to the concepts of richness, power, and realism.

Highness here means the capacity of a model to exhibit subtle variations

in behavior. Pnoer means the capacity to allow strong non-trivial. infer-

ences or extrapolations. Bealism means strong and broad isomorphism with

reality. These qualities are usually not maximized in a single model, so

one may use a powerful model to extrapolate behavior, and calibrate it

to a realistic model known to be strongly isomorphic with reality.

Within the context of the syntactic view, the central questions for

application remain those based on induction, not deduction: is reality a

model of the chosen theory, and how far do isomorphisms among models extend?

Neither question admits a yes or no answer. Reality may be a model of a

chosen theory only at some level of aggregation  e.g., jointed rock masses

as models of Darcian flow!, only under restricted conditions  e.g., low

particle velocities modeling laminar flow!, or only in an approximate way

 e.g., Mohr-Coulomb strength criteria!.

S.l.2 Znformation Content of Models

With the possibLe exception of simple curve fitting, the introduc-

tion of a theory from which a mathematical model is constructed introduces

information to an analysis not contained in the observation themselves

 Kaufman, 1979! . This information is added by assuming reality to be a

model of the theory.

An important question on the relation of data and professional

opinion is the amount of information added by adopting a theory, and there-

fore a mathematical model. The theory reflects a history of empirical
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observations, and therefore one measure of the information content of a

theory is the total information contained in those observations  Cornell,

1979; Veneziano, 1979! . While the set of observations confirming, say,

Darcy ' s law cannot be enumerated in practice, one might assume that some

sufficient statistic could be defined comprising this information. This

might be the prior model credibility of the composite Bayesian approach

 Section 5.1.4!. While useful, this concept underrates the importance of

induction in theory formulation  e.g., Salmon, 1966!, and possibly carries

the potential for leading the unwary into a semantic view of models.

A different approach to the amount of information in a chosen

theory, and a mathematical model of it, is the degree to which the prob-

ability distribution over predictions is reduced by introducing the

theory, as compared with that deriving solely from site specific observa-

tions  i.e., simple curve fitting or interpolation!. This definition is

akin to informational entropy.

Neither of these approaches by itself is satisfacotry. Both the

power of a mathematical model and its realism  here, confirmation! should

influence the amount of information it introduces. The statistical view

 data record! deals with realise; the entropy view deals with power. A

combination is required

5.1.3 Uncertainty in Modeling

Decision analysts and Bayesian statisticians would hold that pre-

dictions of performance, whether they are assessed directly or come from

mathematical modeling, are merely statements of subjective degrees-of-belief

about the world. In quantifying the uncertainty in model predictions,



uncertainties in input parameters 9 are assessed and then propagated

through the model. But a carefully assessed probability distribution

 pdf! over 9 gives i3.1usory satisfaction of having rationalized pro-

fessional uncertainties. Few decision analysts, let alone safety analysts,

would accept a model prediction, even though containing parameter uncer-

tainty, as a complete statement of uncertainty in the real world.

As a first cut, the sources of uncertainty in making prediction of

reality from mathematical models are the fol3.owing:

~ Theoretical Misunderstanding � reality is a model in which not

all the valid sentences of the theory are satisfied, or which

has important interrelational properties exoginous to the theory.

~ Structural l~nade uacies � ohjects and relations in the mathe-

matical model are highly simplified compared to reality.

o Boundary and Znitial Conditions � - the mathematical model un-

like reality is isolated from an environment.

~ Mathematical or Numerica~j a roximations � simslifications and

approximations are used to obtain quantified predictions.

~ Omissions � important facets of reality may not be reflected

in mathematical mode3.s.

The amount of uncertainty contributed by these sources can be large,

and also biased. A common way of handling this bias is by calibrating

the mathematical model results to observations of reality through the

parameters. Thus, the estimates of 9, as expressed in the pdf f 9!,

incorporate not only the physical meaning of 6 but also the model bias

 e.g., Lambe, 1973! . An example of calibrating by modifying parameter

estimates is statistical filt' ring of process response  Gelb, et al.,
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1974!, i.e., "Kalman" filtering. Xn this case parameter estimates are

not independent of the model, and cannot be assessed in isolation. 'Ibis

is an important point for site characterization studies.

A similar calibration of the mathematical model by altering f 8! is

seen in changes among domains of prediction. The linear Mohr-Coulomb

failure criterion for rock is usually only an approximation to an emoiri-

cally non-linear failure surface. Therefore the cohesion and friction

coefficients used in analysis change with the normal stress of interest.

 Figure 5.1! .

Attempts to quantify the contribution of uncertainties other than

0 run afoul of two problems. Either the uncertainties cannot be known

 e.g., omissions of important failure modes!, or the uncertainties reflect

an artifact of the modeling  e.g., boundary and initial conditions are

chosen to calibrate the model, not usually to represent some physical

aspect of reality! .

5.l.4 Dealing With Model Uncertainty

Quantifying model error is more difficult than identifying its

sources, and the contribution of certain sources cannot be established

analytically  e.g., omissions! . Therefore past attempts to handle model

uncertainty have been primarily based on empirical validation.

In frequentist theory model uncertainty work has primarily concen-

trated on the issue of model selection: which of a set of models is

"best," or is a model under consideration adequate' While hypothesis

testing approaches imply the semantic view of models, it would be unfair

to suggest that the modelers themselves subscribe to that view. Other
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Bayesian techniques of model validation are based on posterior

probability. Given an inference set of models N =  m , ..., m ! and data1'

Z = JZ, ..., Z !, the best model is that which is most probable in

light of Z. The analysis can be extended to include a loss function for

selecting the "wrong" model, and the selection treated as a decision.

Note, however, the implied semantic view of models.

A more interesting problem is that of combining model predictions

across models. This has been treated by Giesel �969!, Mood �978!,

Grigoriu �976!, and Veneziano �976! among others The approach of

these efforts has been what is here called the composite Bayesian distri-

bution  CBD! . The CBD is a linear weighted sum of the model predictions

over N. Heights are taken proportional to the posterior probabilities

 or densities! of the models, again implying the semantic definition.

Let S = S , ~ .., S be zero � one parameters associated with m , ..., m1'

respectively, where S, = 1 if m. is the correct model, and zero otherwise.
i i

Clearly ZS, = 1.0. Letting e be the model parameter with respect to each
i

model,

f '  Se [ Z! f  Se! L  ZISB! �.1!

The predictive density function over some prediction y is found by

integrating  summing! over the models and parameters

2techniques such as maximum R or cross validation seek the model that

best fits the data according to some prespecified, usually ad hoc, criter-

ion. The frequentist techniques do not allow consideration across models.
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f y z> = fff y~m,,8! f' s,e!z!dmde �.2!

The difficulties with this approach are that it is implicitly

To answer these objections, a second approach to model aggregation

has been introduced which is based on a joint likelihood concept  leung,

l979! . The joint likelihood concept treats the model predictions as

information, in a Bayesian sense, and defines a joint likelihood function

over them. Thus the predictive density on y becomes

rt A
f' y~y, ..., Y ! ~ f  y!L y i ---r y iy!

l n l n
�.3!

semantic, and that it assumes independence of model predictions. It also

exhibits the undesirable property that as the dimension of M increases,

the predictive density function of  y! becomes increasingly diffuse By

introducing a new model, uncertainty in the prediction increases even if

the prediction of the added model is consistent with other model predic-

tions, and even if the added model is based on a different theory. Thus,

if three models yielded the predictions of Figure 5.2, the CBD might look

something like Figure 5.3. This would not seem a particularly useful

result The pxoblem is that the prediction may contain more information

than is being exploited.
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where y, ..., y are the predictions of the n models and may be either
n

deterministic or probabilistic. The advantages of this approach are

that it treats model predictions as they are intuitively treated, it allows

for correlation among models, and it implies a syntactic view of models.

Furthermore, within this procedure the addition of new models reduces predic-

tive uncertainty in y, if the model results are consistent with one another.

That is, the additional model prediction adds information and therefore

confirmation to the prediction of y, rather than adding another random

error.

The importance of correlations among mathematical models is seen

in Table 5.l, in which the maximum likelihood estimate of the conditional

correlation coefficients among a number of foundation settlement models

and a number of pile capacity models are shown. The correlation can be

large because the individual formulae may be models of related or over-

lapping theories, even though the mathematical structure of the models

are different  e.g., most assume elastic stress distribution! . This is

an important point= if model predictions are correlated, little new in-

formation is developed by performing parallel analyses Furthermore, the

sources of dependence may be subtle.

Both the CBD and joint likelihood  JL! methods can be cumbersome

in specific applications, and both have been formulated for use with

empirical verification data. Zn principle, this need not be the case.

For the CBD approach the density function f s! could be taken directly

from expert opinion. Similarly, as Morris  l974! points out, the likelihood
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Table S. 2 -- Conditiona7. ooz'r e Lations among model pz edictions

PILE CAPACITY MODELS

SETTLEMENT MODELS

Elastic 8-

Elastic

Buisman-DeB.

Buisman-DeB. c!

hIeyerhof

Meyerhof  c!

Schmertrnan

Terzaghi & Peck

Terzaghi 6 Peck  
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function is always a subjective choice even if updated by data. The JL

function of  y , ..., y ! could also be assessed from expert opinion.
n

This seems a potentially fruitful area of work since very little has been

done on quantification of model uncertainty and aggregation, and because

considerable insight may be gained by further study.

5. 2 Stability Modeling

Stability against strength failure of bottom sediments due to

imposed platform loads are commonly analyzed by limiting equilibrium

analysis, balancing imposed forces against the cumulative cohesive and

frictional resistance mobilized over an hypothesized critical failure sur-

face. The most common semi-empirical model is Terzaghi's superposition

of cohesive, overburden, and frictional resistances. The empirical basis

of this formula is well developed, and analyzed in Section 5.2.1. Other

models with which there are fewer verifying studies, but which nevertheless

are in wide use offshore have been presented by Hansen �970! and Meyerhof

�963! .

Analytical methods admitting consideration of spatial variability

are mostly based on slope stability models using various methods of

slices  e.g., Bishop, 1955; Horgenstern and Price, 1965! . Several $ = 0

analyses have been presented in the literature  e.g., Veneziano, et al.

1977!, but the number of frictional analyses combining methods of slices

with spatial variability is very limited  e.g., Alonzo 1976; Peintinger,

et al., 1980! . A model based on modified Bishop Method was developed

to establish the influence of spatial variability, and is presented in

Section 5.2.2.
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5.2.3. Semi-Empirical Formulae

Bearing capacity predictions based on Terzaghi's superposition

method are partly theoretical and partly empirical. Many theoretical der-

ivations have appeared in the literature as have the results of tests on

model and prototype footings. This section addresses the uncertainty in

bearing capacity predictions, inferred through statistical analyses of

currently available data. The magnitude of aggregate uncertainty in

bearing capacity is shown by example.

Previous Studies

While many studies of bearing capacity have been published, few have

attempted to quantify uncertainty. Fewer still have based such quantifica-

tion on large numbers of empirical data. Most studies approach uncertainty

through modeling in which parameters are assumed spatially constant but not

known with certainty.

Singh �971!, Hoeg and Murarha �975!, and Kraft and Murff �975!

have published similar analyses of foundation stability. These analyses

yield surprisingly high probabilities of failure  p ! at commonly acceptable
f

deterministic factors-of-safety  FS! . Typically, probabilities are cal-

culated. under the assumption of Normal distribution of the safety margin,

which is conservative and in part explains the high p 's. Further, though,

the authors cite the sensitivity of bearing capacity factors to effective

friction angle as a primary source of uncertainty.

Hoeg and Tang �978! considered slip surface stability under an off-

shore gravity platform. In the undrained case they conclude that approx-

imately 70% of the uncertainty in FS predictions are due to undrained

strength. Another 25% they attribute to loads. The authors note, however,



Theoretical Consideration

The ultimate bearing capacity of a shallow, concentrically loaded

strip footing on a homogeneous soil is commonly determined from the Terzaghi

�943! superposition method. Combining the contributions of cohesion,

surcharge, and unit weight, the superposition method yields:

1
q = cN + qN + � yBN

c q 2
�. 4!

where:

q = ultimate bearing capacity for a vertical concentric load

N ,H ,Nc' q y = bearing capacity factors

B = foundation width

q = uniform surcharge around foundation

c,y = effective soil cohesion and effective unit weight

The special case of interest here is the bearing capacity of a foundation

initially on the surface of a cohesionless soil  c=O,q=O! . Accordingly,

Equation �.4! becomes:

l
q = -yBN

v 2
�.5!

Modification of Equation �.5! for load eccentricity, load

eccentricity, load inclination, foundation shape, and foundation size

introduces several correction factors. Bjerrum �973! suggests the form:

that uncertainties deriving from poorly understood mechanisms  e.g., behavior

under cyclic loads! cannot be directly included in calculations.
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q = � YBNRS IE
1

G 2
�.61

where q is the vertical component of stress at failure for an inclined
vg x

load. The terms R, S, E, and I are correction factors for foundation
Y Y Y Y

size, foundation shape, load eccentricity, and load inclination,

respectively.

Theoretical bearing capacity factors, N , for strip and circular orY'

square footings differ by factors of two to four. The sensitivity of N
Y

to friction angle is particularly notable with 5% deviations in friction

angle causing almost 50% deviation in N . Theoretical solutions for N
Y Y

assume a unique value of friction angle. Substantial research indicates

that the selection of one friction angle to model the behavior of sand

is a major simplification  Ladd, 1977 , Lee, 1970 , Rowe, 1969 , Corforth,

1964; Nash, 1953! . The appropriate friction angle for selecting N
Y

depends on: �! the mode of failure, �! friction angle anisotropy,

�! strain compatibility, and �! curvature of the Mohr-Coulomb strength

envelope. Terzaghi �943!, Meyerhof �963!, Han*en �970!, and Vesic

�973! suggest methods for selecting an appropriate friction angle

Qf particular importance in the extrapolation of small scale footing

tests to large scale foundations is the curvature of the Mohr-Coulomb

strength envelope. For model footings, stresses are low and the friction

angle large. Field scale foundations produce higher stresses with a cor-

responding decrease in friction angle. As shown by Graham and Pollock

�972! spatial variation of the mobilized friction angle can be large.

Foundation roughness also effects bearing capacity. Meyerhof �955!

indicates the bearing capacity of a rough foundation � < $! is twice that
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Of a perfeCtly SmOOth fOundatiOn � = 0'! . HanSen and ChriStenSen �969}

suggest a 50% decrease in N for 6 < 20'. For 6 > 20 the foundation

behaves perfectly rough regardless of !. Chen �975! indicates similar

behavior for 6 = 17'.

Evaluation of Model Footin Tests

By inspection, N is log-linear over the test range in both groups

of data. Accordingly, linear regressions of ln N ! on j were thought
'Y

appropriate. Standard linear regression  i.e., least squares estimation!

yields,

ln N } = 1.667 + 0.173$
L/B = 6

�.7!

Data from many model tests exist for the bearing capacity, inclination,

and eccentricity factors. Little in. formation is available for the shape

factor or effect of foundation roughness and size. Several difficulties

arise in aggregating tests from various studies. Differences in: �!

test apparatus, �! test procedure, �! identification of failure laid,

�! footing material and roughness, �! contiol of soil density, and �!

measurement of friction angle, all effect comparison. Despite these dif-

ficulties, the present analyses treat: experimental data as reported.

Figures 5.4 and 5.5 presents experimental results for rough footing

with length width ratios  L/B! of one, and six. An L/B ratio of six is

essentially a strip footing, while an L/B ratio of 1.0 corresponds to circular.

and square footings. Friction angles are from triaxial tests with confining

pressures of one-half to two tons per square foot. Friction angles vary

from 28 to 45'.
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ln N ! = 2.107 + 0.173$
y L/B= 1

�-8!

values of ln N~! given $. The expected value and variances of N itself,
Y

given $ are  Aitchison and Brown, 1957!,

E[N ] = exp [E[ln N ! ] + � V [ln{N ! ]!1

y Y 2 Y
�.9!

V[N ] = exp[2E[ln N ! ] + V[ln N ! ] ! ~
'Y

 exp [V[ln N ! ] - 1}
Y

�. 10!

where

E[ln N ! ] = a + b y!
y

�.11!

V[ln N ! ] = c
2

ln N !
Y

�. 12!

ThUS,

E[N ] = exp  -1.646 + 0.173 $! ].
y L/B = 6

�. 13!

V[N ] = �.429! exp  -3.292 + 0.346 $! !
y L/B = 6

�. 14!

The sample size  n!, correlation coefficient  r!, and error variance

 c ! are 130, 0.947, and 0.0425 for L/B = 6 and 145, 0.925, and 0.0864
2

2
for L/B = 1, respectively. Statistical tests  !  ! show the residuals to

be Normally distributed and homoscedastic.

The regression lines shown on Figures 5,4 and 5.5 are the expected
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F[N ] = exp [-2.064 + 0.173 $! ]
y I/B =1

�.15!

V[N ] = �.0902!exp  -4.128 + 0.346 $! !
y L/B=1

�.16!

Figure 5.6 compares the E[N ] with theoretical solutions. The E[H ] is
Y Y

generally larger, by up to a factor of two. The slopes however, are

similar.

Extrapolation of Equations �1 3! through �.16! to field scale

foundations requires consideration of size effects. Dimensions of the

model strip footings range from 1.5" to 2.5". A representative value of

2" can be used for determining R . Similarily, dimensions of the circular

and square models are about 4". To extrapolate these model dimensions to

field scale foundations of 5' to 10' involves B . /8 ratios of 20
field model

to 50. The reduction in bearing capacity, therefore, will be significant,

and even with proportionally small error in R , the absolute error will be
Y

great.

Experimental results for R are shown in Figure 5.7. The Graham and
Y

Pollock �972! scale dependent plasticity analysis for K' � 0.30 and K'

= -0.20 is also shown. The experiments of Ovesen �975! are from centri-

fuge tests. The experiments at small B . d/B ratios are from con-
field model

ventional model footing tests. Although the results are too inconsistent

for meaningful regression analyses, they generally support the reduction

indicated by Graham and Pollock.

Figure 5.8 summarizes model footings tests for the effect of load

eccentricity. Analysis as a function of eccentricity ratio  E/B! indicates

a least squares second order polynomial with expectation and variance:
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E [E ] = 1.0 � 3.50  E/B! + 3.03  E/B!
2

Y
�. 17!

V[E ] = 0.0058
Y

�. 18!

The regression was constrained to provide F[E ] = 1.0 for E/B = 0.
Y

cates a second order polynomial with expectation and variance:

E[I ] = 1.0 � 2.41 H/V! t 1.36 H/V!
2

Y
�.19!

V[I ] 0.0089 �.20!

The tests indicate the effect of foundation shape. Strip footings

apparently yield lower values of E than other geometries. Regressions
Y

for L/B = 6 and L/B = 1 confirm a statistically significant difference.

A significant difference also exists between the regressions and the

Neyerhof �963! solution. For E/B   0.40, however, the absolute difference

between all expressions is less than 0.10. As a matter of practical con-

cern, Equations �.14! and � 18! satisfactorily describe the test results.

Figure 5.12 summarizes the analysis. Purkayastha and Char �977! report

a statistical analysis indicating foundation size and friction angle have

no influence on E . Their least squares estimate of E is also shown in
Y Y

Figure 5.8.

The experiments from several investigations of load inclination are

shown in Figure 5.9. The values of Saran, et al. �971! and Muhs and

Weiss �974! are consistently 1arger than other results. Despite this

difference the tests are considered one sample. Regression analysis indi-
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The regression was constrained to yield K[I ] = 1.0 for H/V = O. No
Y

significant improvement results for high order polynomials.

Theoretical solutions suggest I varies with friction angle and
V

foundation shape After reviewing experimental data and performing simple

stability analyses, Andersen �972! concludes I is not a function of
Y

friction angle. Results for the few friction angles shown here concur with

this finding. A trend does appear with foundation shape. Strip footings

indicate smaller values of I . The results of Meyerhof �953! for L/B = 1
Y

and L/B = 6 confirm a statistically significant difference. These results,

however, are based on too few tests to yield a definitive relation. Accor-

dingly, Equations �.19! and �.20! are still suggested to describe the

test results

In Equation �.6! the effects of eccentricity and inclination are

independent. This seems not to be the case in reality. Sixteen tests were

found in which eccentricity and inclination were varied simultaneously

 Figure 5.10! . The bearing capacity in these tests is about 20% lower than

that predicted using E[E ]if[I ]. However, the data are few. It should be
Y Y

noted that this joint effect is not a statistical covariance in the common

sense, as only a single bearing capacity can be measured in any one test.

Sufficient consistent data are not available to evaluate the effect

of foundation shape. Figure 5.11 presents several series of test results.

Each entry represents the ratio of N from several experiments for L/B = 6
Y

and some other footing shape. The entry of DeBeer �970!, for example

represents the ratio of N from 60 tests for L/B = 6 and L/B = 1. For

geometries other than L/B = 1 or L/B = 6, DeBeer �970!, Hansen �970!, 'and

Vesic �973! recommend the arbitrary selection of a linear relation
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independent of friction angle of the form:

�. 21!S = 1.0 m B i/L
Y

where S = 1.0 for strip footings and m = 0.40. The parallel regressions
Y

of N for L/B = 1 and L/B = 6 support the independence of S and friction
Y

angle. Comparing the regressions yields m 0.383. There is no evidence,

however, to indicate the relation is linear Accordingly, for geometries

other than L/B = 1 and L/B = 6 the evaluation of bearing capacity must

still employ deterministic shape factors.

Few experimental results exist on the effect of foundation roughness.

Two series of tests by Ko and Davidson �973! and Meyerhof �955! are

inconsistent. Ko and Davidson show a 10% to 20% reduction and Meyerhof

a 40% to 50% reduction from 6 = ! to 6 = 0 Concrete foundations,

however, are usually considered perfectly rough. This practice is sub-

stantiated by several series of tests  Meyerhof, 1961; and Potyondy, 1961!

indicating 6/$ for sand-concrete interfaces greater than 0.80. The effect

of roughness on bearing capacity for concrete foundations can therefore

be neglected.

Ag re ation of' Uncertainties

Consideration of theoretical solutions and model footing tests well

establishes Equations �.5! and �.6! for the prediction of ultimate bearing

capacity. Statistical evaluation of the bearing capacity and correction

factors allows estimates of the uncertainty in this prediction.

lf the true values of $, E/B, and H/B are known, the uncertainty in

bearing capacity is from model uncertainty alone. First-order second-

moment approximation yields
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E[g ] "-   � Y BS R !E[N ]F [E ]F [I ]
1

a . 2 Y Y Y Y Y
�. 22!

n n Bq Bq
V[ ] " z z "' ' C[x.,x]

>=1 3=1 3
�. 23!

where x. represents the parameters N, E, and I and the derivatives are
3 Y Y Y

taken at the mean. Treating the parameters as uncorrelated:

n 3

V[q �]= z
i=1

V[x, ]
�. 24!

For L/B = 6 and L/B = 1 the value of N is available and S is not
Y 'Y

necessary. Similarily, if the load is not eccentric or inclined, E and
Y

I are omitted.
Y

Although Equations �.22! through �.24! are for known parameters,

the expressions for V[X,]  Equations 5.l4, 16, 16, 18, and 20! include
i

2 2 2
some parameter uncertainty  c �, a, and a ! from the laboratory tests.

E/B H/V

2 2 2
0 pc g aXld 0 ~

N E I
Y Y Y

In practice, the true values of f, E/B, and H/V are seldom known.

Uncertainty exists in $ from spatial variations and from testing errors.

Uncertainties in E/B and H/V arise from errors in estimating the magnitude

and line of action of applied loads. The expressions for variance can be

modified to include parameter uncertainty in the form:

1n other words, nat all the uncertainty is due to the models. For laboratory

experirrents with carefully placed sand and measured loads, however, the

parameter uncertainty is assumed small relative to the model uncertainties
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2[N ] 6 = exp -3.292 + 0.346 m-! + 0.030  � ! ! ~Y L/B=6

 exp   0.042 + 0.030 ~! ] - 1!
2

�. 25!

2V[N ] = exp -4.l28 + 0.346 m-! + 0.030 a � !
q I,/B=l

 exp �.086 + 0.030 a � ! ] � lf2
�.26!

P[E ] = 0.0058 + [6.06 m ! � 3.50] a2 2

Y E/B E/B
� 27!

V[I ] = 0.0089 + [2.72 m�! � 2.41] a2 2

'Y /v z/v �. 28!

the standard deviation  S[ ~ ]! of N, E, and I
'Y Y Y

For a deterministic applied vertical stress, q, a second momentm,a'

analysis of the factor of safety yields:

E[FS] = F[g ]/<Z

V[FS] = ~[q ]/g� 2
�.29!

If uncertainty exists in the applied load, the moments of the factor

of safety are evaluated from:

�.30!

Figures 5.12 and 5.13 illustrate the effect of parameter uncertainty on
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V[q,] E[q
V[rs] ' + � � ' � V[qv ]

E[q ] E [q,]
�.31!

assuming no correlation between q and q
v~ CI m,a

The following examples illustrate the effects of uncertainty on the

bearing capacity factor of safety and probability of failure.

~aaple

Consider the basic cases of a strip and circular or square footing

subject to a vertical, concentric load. Prom Equations 5.22 and 5.23

the expected value and variance of the ultimate bearing capacity are:

E [q ] =  Y aR ! E [N ]
1

gu
�. 32!

V[q ] "  ~y~R ! V[N ]l 2

tu
�. 33!

For a deterministic applied stress the coefficient of variation of the

factor of safety is:

COV[FS] = V [N ]/E[N ]
Y Y

�. 34!

�.35!= COV[N ]
'Y

Equations �.l3! and �.l5! for E [N ] and Equations �.25! and �.26! for
Y

V[N ] give the coefficients of variation for factor of safety shown in

Table 5.2.
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Tab2e 5. Z -- C'ompariacn of C'OVC'ZS! and pf foz a vertical concentric
funoti on load.
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Probabilities of failure, given E[FS], and COV[FS], are taken from a logN~.rmal

distribution on FS. This assumption reflects the logarithmic relation of

-4 -2
N to $. The [FS] 's leading to p = 10 and 10 . ~re given for various

'Y f

COV[FS] 's. However, the sensitivity of p to distribution assumptions is
f

shown in Figure 5.14. Increase in COV[FS] due to uncertainty in $ is

shown in column two.

One must be cautious in expressing uncertainty as probability of

failure. Unlike FS, which is widely accepted as an index of safety

rather than a statement of deterministic truth, p is commonly interpreted
f

to be what it says, the probability of failure. This is not true: p is
f

a conditional probability of failure, given the model being used and a

number of other strong assumptions. Thus, p too is only an index of
f

safety. It is a more descriptive index than FS since it includes variance

in the prediction, but it is not a global probability of failure. For this

reason the realiability index, 9, has been introducedg such that

E[FS] � 1.0

~VtFs]
�.36>

and eccentricity consider the specific example of a strip footing with the

parameters. -$ = 37O, y = 120pcf, B = 5', H/V = 0.3, E/B = 0.1, and

R = 0.43. The appropriate correction factors for no parameter uncertainty

The uncertainty in predicted bearing capacity increases as additional

correction factors are included. To illustrate the effects of inclination
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iE[N ] = 116
Y

E[E ] = 0.6S
Y

E[Z ] = 0.40
Y

V[8 ] = 579
Y

V[E ] = 0.0058
Y

V[Z ] = 0.0089
Y

From Equations �. 22! and �. 23!,

E[g ] = 2.1 tsf �.0 tsf!
v p  x

V[q ] = 0.5 tsf �.12 tsf !
2 2

,5

CDV[q ] = 034 �34!
V ~Q

where the parenthetical numbers correspond to the submerged condition.

The addition of moderate load inclination and eccentricity, increases the

uncertainty by 60%  o.34/0.21!.

Xf parameter uncertainty is included as a- = 1', a = 0.01, and
z/a

c = 0.033, the expectation remains the same but the correction factor
H/V

variances increase to

V[N ] = 1040
Y

V[E ] = 0.0066
Y

V[I ] = 0.0114
Y

and the coefficient of variation in the factor of safety increases from

0.34 to 0.40.

The uncertainty in FS also increases with uncertainty in the applied

loads. Moreover, uncertainty in loads necessitates reconsideration of the

definition of PS. For the previous conditions, failure surfaces as a
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function of applied horizontal  H! and vertical  V! load are shown in Figure

5.15. These are the locii of g = q ; bounding lines are + one
w, ct v,a'

standard deviation. Again, o- = 0.

For the expected loads of point A the FS against failure by increa-e

of the vertical load is 5,3; against failure by increase of the horizontal

load, 1.4. These PS's leave little feeling for the actual uncertainty

shown here as contours of a hypothesized joint distribution on H and V.

The uncertainty is whether the realized loads will fall outside the failure

envelope  see Section 6.3.2! . Given the computational difficulty of

integrating over the density function of  H,v!, relativity may be indexed

by the closest distance to the failure envelope measured in units of the

standard deviation  e.g,, Backwitz, 1976! . Here, H and V are taken inde-

pendent with the same variances, however extension to correlated variables

with different variances is straight-forward. Including uncertainty in

both the loads and failure envelope, the reliability index becomes

380
1.52

I/150 +200

where 380 is the minimum distance from A to the failure envelope and 150

and 200 are the standard derivations of load and failure envelope, respec-

tive ly.

Conclusions

An extention of the Terzaghi �943! superposition method for bearing

capacity has been considered. Where possible, data have been analyzed with

statistical methods to draw conclusions on the uncertainty in the parameters
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of that method. From this investigation the following conclusions ar'e ad-

vanced.

�! Theoretical consideration of ultimate bearing capacity of

foundations on cohesionless soil leads to large variation among solutions.

Variations by factors of two to four are typical. Proposals for N and I
Y ' Y

display greatest differences.

�! Sufficient data exist to statistically analyze N, I, and E
Y Y Y

However, at present there are insufficient data to statistically analyze

effects of foundation size, shape, and roughness on bearing capacity. At

present levels of knowledge, substantial and unquantifiable uncertainty

derives from size effect.

�! Primary uncertainty seems to derive from the re1ationships of

N to $ and I to HjV. Zf Q can be estimated to within + 2'  g- = 1.0 !,
Y Y

incremental uncertainty in N is small. For greater than about 1',
Y

incremental uncertainty in N rapidly becomes large, and uncertainty in <f
Y

becomes the controlling variable.

�! For combined vertical and horizontal loads, a FS based on either

V or H individually may be an inadequate characterization of safety when

the loads are uncertain.

5.2.2 Analytical Nodeling of Stability

The procedure of the preceding section for predicting stability is

a partly theoretical, partly empirical approach based on the calibration

of a simple formulae to observed case histories. Another approach is purely

analytical. That is, the geometry of the foundation design and sedimentary

zoning is modelled and various potential failure surfaces examined to identify the

weakest.
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Procedures for analyzing stability directly are usually based on

finite element techniques or on limiting equilibrium procedures. Because

FZN models are essentially addressed to deformations, they are considered

in Section 5.3.2. Attention here is focused on limiting equilibrium

models, as for example the various methods of slices, in their application

to bearing capacity. While such techniques are uncommon in analyzing

small footings, they are increasingly used as foundation dimensions increase

 e.g., Lauritzsen and Schjectre, 1976!. The main focus here is to assess

the level of uncertainty in predictions of bearing capacity made with

limiting equilibrium models and to compare that with uncertainties using

Terzaghi's superposition method.

Most of the work on stability analysis using various methods of

slices has been done for slope stability studies. The comparitive accuracy

of these methods has been discussed by Whitman and Baily �967! among

other places. In these methods the sliding mass of sediment is arbitrarily

divided into vertical slices and a force equilibrium taken on each. This

leads to forces along the surface of assumed sliding, which are vectorily

added to obtain a resisting force, and compared to the total driving force

to obtain a factor of safety.

The problem with methods of slices, and the reason for there being

several such methods, i; that the physical system is indeterminant. Unless

deformation properties of the sediment are considered, assumptions must be

made to reduce the number of unknowns, and different assum'ptions lead to

different factors of safety. Therefore, even if strength parameters for

the sediment are well-known, modeling errors are possibly substantial.

However, because the sediment properties are never well-known it is diffi-

cult to separate out parameters and model error in case studies.
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Furthermore, sediment parameter estimates are often made with the modeling

procedure in mind and may change with changes of model.

Probabilistic analysis of slice models have been made by a compari-

tively small number of workers  e.g.; Yuceman and Tang, 1975; Matsuo 1976;

Tobutt and Richards, 1979! . Primarily, these have treated soil proper-

ties as lumped parameters rather. than stochastic variables. Typical results

are given in Table 5.3. Alonzo �976! and Peintinger, et al. �980! have

considered slice models with spatially variable soil properties. The e

results are also given in the table.

Analyses were performed to see whether similar coefficients of

variation are obtained for the bearing capacity case. The geometry of

Figure 5.16 was assumed, and various trial failure surfaces investigated.

All of the failure surfaces begin as a triangular wedge beneath the footing

and extend through a log-spiral into a linear tangent which finally

intersects the midline. Soil friction angle  tan!! was taken to be a

stationary random field and c was assumed negligible. This is in fact not

a good assumption  e.g., Section 5.2.1!, as $ reduces with increasing con-

fining pressure. Therefore, the friction angle should be lower immediately

beneath the foundation than at other locations on the failure surface. This

could be analyzed using a trending mean model of spatial variation, but was

not. Reliability coefficients for the minimum reliability failure surface

using the modified Bishop and Felline~ methods are shown in Figure 5.17

as a function of autocorrelation length. Summing r ~ 30m leads to r /0 = 0.3
0 0

and coefficients of variation of FS against stability failure on the order of

6 to l0%. Note, this uncertainty is due only to spatial parameter variation,

and not modeling uncertainty.
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Table 5.3 � Variations in Calculated Factors of Safety Among Various
Method of Slices Procedures+

~Sic e 3.5:j., ~Pore ressure factor u/th=0

strength factor ~ H tant!/c
0 2 5 8 20 50

1.00 1.00 1.00

1.00 0.94 0.94

l. 00 l. 00 l. 00

1. 00 1.0G

G. 96 0. 98

1. 00 I. 00

1. 00

0. 95
l. 00

l. 09 1. 02 1. 01 1. 00 1. 00 1. 00

1. 00 � 1. 00 l. 00 l. 00

1. 00 1. 00 1. 00 1. 00 1. 00 1.0G

f actor u!  h=0. 6

streotth factor YH tao!!/c
0 2 5 8 20 50

1-00

0. 50

0.99

1.00

l. 00

0.57

0.99

1.00

1. 001. 00

* From Duncan, J.H. and S.G. Mright �980!. Accuracy of equilibrium methods
of slope stability analysis," Engineering Geology, v16 �,2!:5-19.

Log Spiral
Ordinary Method
Bishop
Force Equilibrium

 Lowe and Karafiath!
Janbu General formula

Morgenstern-Price
and Spencer F x!=C

Log Spiral
Ordinary Method
Bishop
Force Equilibrium
Janbu

Morgenstern-Price

1. 00 1. 00 1. 00 1. 00

1. 00 0. 91 0. 75 0. 68

1.00 1.00 1.00 1.00

1. 09 1. 03 1. 02 l. 01

1 00

1.00 1.00 1.00 1.00
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5.3 Deformation Modeling

Deformation of the foundation of a gravity structure is induced bo h

by the static weight of the structure and by transient loading As the

latter are dynamic, the analysis of deformation under them is more involved

than under the static COmpOnent itself. This SectiOn cOnSiders deforrnations

under static loads, and the influence of lateral  e.g., wave! loaves on static

deformation.

Analyses of deformation are made either by simple semi theoretical

procedures calibrated by field data, or by numerical models based on elastic

or elastoplastic theory. The former have the advantage of field verifica-

tion, but the disadvantage of requiring extrapolation outside the domain of

calibration. The latter have the advantage of tailoring analyses directly

to the case at hand, but the disadvantage of being poorly verified by

case histories. These two approaches are discussed in Sections 5.3.1 and

5.3.2, respectively

Under gravity  and cyclic! loads a structure induces deformations in

the underlying sediment mass which manifest as total and differential settle-

ments of the foundation  Figure 5.18! . Total sett2emerrb means either the

vertical downward movement at a point on the foundation  e.g. ~ 6 or 62!,
1

or the averaged vertical displacement across a foundation. For flexible

foundations this movement may vary non-uniformly across the foundation area,

whereas for a perfectly rigid foundation the movement must define a plane.

Affect'eatut2 seft2smerrt means either the ratio of settlement differences

to their separation  e.g., ~6 -6 I/k! or the angle induced by the settlement
1 2

 e.g., arctan  ~6 -6 I/2,! . Zn general, differential settlement is the
1 2

controling criterion of structural performance, although in deterministic
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Figuze B. 28 -- 7llu8tration of total and differential
Settlement for' rigid foundation.
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modeling differential settlement is difficult to predict. Thus, total

settlement is often used as a surrogate criterion. This is not necessarily

the case with probabilistic modeling. When structural connections such as

piping or anchorages are involved, total settlememt may become a design

consideration in its own right.

The Georges Bank site, as discussed earlier, consists of sands and

gravelly sands to at least 100m, with minor inclusions of clays and peats.

Therefore, delayed consolidation settlement under static loads is not

considered here. The only settlements considered are immediate, and assume

rapid, complete drainage. The issue of inclusions in an otherwise homo-

geneous mass are considered in Section 5.3.3.

5.3.1 Simple Settlement Formulae for Sands

A number of settlement formulae for the settlement of foundation on

sands have been proposed in the literature Primarily these formulae are

based on variants of elastic theory and have been calibrated to observations

on spread footings and model or plate-load tests. The question of extra-

polating such results to exceedingly large mat-type footings is at issue,

and ta date has not been adequately dealt with through empirical verifica-

tion. In principle, if not in fact, the arguments behind most of the

settlement formulae are independent of scale.

Taxonomy of Simple Settlement Formulae

Settlement formulae for foundations on sand can be roughly grouped

into five classes: Those based on 1! case penetration resistance, 2!

standard penetration blow-counts, 3! laboratory tests. 4! field tests, and

S! elastic theory. This taxonomy is somewhat artificial, but useful.

Methods based on finite element analysis or other numerical models are
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considered separately. The review and evaluation of these formulae

included those listed in Table 5.4.

The purpose of the analysis was to establish the magnitude of model-

ing error, both bias and random, associated with common formulae. The

procedure for doing so was straightforward: empirical data were collected

for a number of case studies and relative predictions and actual perfor-

mances compared. For those formulae for which sufficient data were avail-

able, regression analyses were performed. The results are presented as

expected regression lines  least square regressions in a classical

sense!, and as correlations among modeling errors. Joint regressions of

model predictions on observed behavior are presented for use in the joint

likelihood formulation of model uncertainty of Section 5,l.

In using empirical relationships to asses model uncertainty, both

inherent and  regression! parameter uncertainty must be considered.

The expected regression line represents the model bias, while varia-

tion about the regression line represents random error. Because the number

of data in many cases is insufficient to precisely establish the regression

line, uncertainty in the regression parameters must be integrated out to

form the broader "predictive" distribution.

It must be emphasized that the present evaluations are based on

regression analyses of available data, nothing more. They therefore suffer

all the limitations of regression analysis and must be viewed as such. More

carefully instrumented case studies or more extensive data might change

numerical conclusions. Nevertheless, given the present data, these re-

sults are the best that can be objectively inferred from the data alone.

The application of these results to new cases rests on an assumption that
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Table 5.4 � ~Slm le Settlement Eotmulae Considered in Data Evaluation

a

p = Zll 535[  � "!hz loglO  "'!]
vi

Buisman-DeBeer �967!

p = PBI/MElastic Theory

p= 2aP Z
i 1 i

E
Egorov �957!

p ine! - C C � I: � 1
2P 2B 2

w d N B+1Meyerhof �965!

2B I 2B I
p = hP � = C C hP E � hz2 z

E 1 2 E
0 s 0 B

Schmertmann �970!

p in.! = C Cd I l~l!3P 2B 2
Terzaghi and Peck �948!

"corrected" means that blow counts or other in situ measurements have been

corrected for overburden effect.

a

B Cl
C2
Cd
C
Ew
I
i

kiM N P p
v

half-width of footing
footing dimension
correction factor for embedment

correction factor for creep
correction factor for depth
correction factor for groundwater
subgrade modulus
influence factor
layer number
coefficient dependent on geometry
modulus of compressibility
blow count

average applied bearing pressure
cone resistance
settletnent

vertical stress
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the data set on which they are based is homogeneous with the cases to which

they will be applied. In other words, that nature is uniform This is

never precisely the case, but all engineering is based on similar faith.

In performing the analyses it was assumed that soil properties Were

well-known. That is, that errors in penetration resistance, elastic param-

eters, and the like were negligible in comparison to model uncertainties.

In many but far from all of the case studies this may be true. Neverthe-

less, part of the error attributed here to model uncertainty comes in fact

from  geotechnical! parameter uncertainty. Then, if parameter uncertainty

is subsequently added to this model uncertainty the result is conservative.

The magnitude of this conservatism has not been estimated.

Procedure for Anal ses and Results

Data on case studies available in the open literature were collected,

and settlement. predictions using each of the 8 formulae made. In total these

comprised 48 cases of observed building settlements, and 48 load tests.

Observed settlements and respective predictions of the formulae are given

in Lee and Baecher �979! . In cases for which insufficient information

on geotechnical parameters were available to allow prediction with a par-

ticular formula, no prediction was made.

Univariate regression of predicted on observed settlement  i.e., to

infer the marginal likelihood function of Section 5.1! was made for each

formula, shown by the example of Figure 5.19. Results are given in

Table 5.5. Data on other methods were too few to allow reasonable

regression analyses.

Assuming predictions and observations to be jointly Normal, co-

efficients for the regression of observed on predicted settlement were also

obtained. These are shown in Table 5,6.
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OBSE RVE D SE TT LEMENT cm

Figure 5. 39 -- Relation between observed and predicted
total settLement on sand, using Sohmer tmann's method.
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Table 5.6 � Regression results for simple footing settlement
with observed settlement as dependent variable.

2
eFormula

802.001.05-0.28Schmertmann

2 45Buisman-I3eBeer 900. 13 0. 56

42Bui,sman-DeBeer

 corrected!
Terzaghi and

Peck  c!
Meyerhof

5.011. 13-0. 02

0. 32 0. 030. 16

0. 842 0. 37 878. 00

690. 25Neyerhof  c! 0.08 0. 59

49Elastic Theory 0.00 l. Ol 1.20

0. 71 3. OlEgorov

y= a+bx+e

[These estimates are made indirectly, using the inverse regression
of predicted on observed settlement.]
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Correlations among model uncertainties were examined from the inferred

joint likelihood function. The regression model for the joint likelihood

x=13 + fy +e �.37!

where x is the vector of model predictions, y the observation, and 8 andI

 ! regression parameters, has the multiNormal error vector

e ~ MN o,+Z �. 38!

where Z is the covariance matrix. Were the models conditionally un-

correlated, the components of e would be independent, and Z diagonal.

However, g is not diagonal

Pairwise correlations were analyzed to obtain a posterior density

function on the correlation coefficient, p, using Jeffrey's �96l! approx-

imation,

2
 v-2! /2

 l-p !f '  p ~ data!
 v+1/2! l

�.39!

where r is the sample correlation coefficient and v the degrees of free-

dom  u=k-2!. A typical result is shown in Figure 5.20 for the high correla-

tion between predictions of elastic theory and the Buisman -DeBeer

 uncorrected! formulae; similarly in Figure 5.2l for the low correlation

between the Buisman-DeBeer  corrected! and Schmertman methods. Most probable

pairwise conditional correlations for all 8 models are given in Table 5.l.

These are the modes of f' p Idata! .



- 208-

0

Figure 5.20 -- Empirical conditional cor-
relation between predictions of elastic
theory and the Buisman-DeBeer {uncorrected!
method.

0

Figure 5.21 -- Empirical conditional cor-
relations between predictions of Buismann-
DeBeer {correctedj and Meyerhof Methods.
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Dif ferential Settlements

Within deterministic analysis differential settlements cannot be

estimated directly since sediment profiles are assumed  zonally! uniform

and all settlements are predicted to be the save. Therefore, following

Skempton and MacDonald �956! predictions of differential settlement are

usually estimated to be some fraction of total settlement.

Skempton and MacDonald analyzed 98 case histories to draw conclusions

on the magnitude of differential settlements and on the consequences.

Grant, Christian, and Vanmarke �972! introduced another 95 cases. In the

present work another 26 cases were identified. The relationship between

maximum differential settlement and maximum settlement is shown in Figure

5.22. These are similar to those relationships reported earlier.

Conclusions on The Accur~ac of Sim le Settlement Formulae

5.3.2 Numerical Modeling of Settlement

An alternative to semi empirical settlement formulae is large numerical

modeling. This type of modeling, based primarily on finite element tech-

niques, has to occupy a central role in the analysis of offshore gravity

structures  e.g., Zienkiewitz, et al., 1979!. The reasons are clear.

Analyses can be tailored to the particular design concept and geometry,

Neglecting the problem of extrapolating fram footings to large mats

or other large foundations, the uncertainty in predictions of total settle-

ment by the methods analyzed would appear to have a coefficient of variation

of 100m or more. This does not include geotechnical parameter uncertainty,

and is corrected for systematic bias. Repeated analysis with more than

one method does not appreciably reduce this uncertainty due to high correla-

tions among models.
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MAXIMUM SETT LE MENT cm

Figure 5. 22 -- Additional data shoving oorr e'Lation betveen
di f f'er enti a 2 and total. set t lemen t. Open squares, foundations
on sand; darkened squares, foundations on fill..



complicated constitutive relations can be incorporated, and a broad variety

of loading conditions analyzed. There are also drawbacks: Empirical

calibration or verification is difficult, parameter estimates are needed

that may be difficult to obtain, and as many or more interrelated param-

eter estimates are sometimes needed as there are data.

Essentially all present uses of finite element techniques are deter-

ministic. In conjunction with the lack of direct calibration data, this

means that uncertainties in predictions of foundation performance are dif-

ficult to quantify. Therefore, a finite element technique was developed

for incorporating stochastic variation of sediment properties and leading

to second moment descriptions of deformations.

Previous Anal tical Studies of Settlement Uncertaint

The Literature contains several probabilistic models for the predic-

tion of foundation deformations. These works are identifiable within

three main groups:

�! ModeLs for estimating settlement on sand from standard pere-

tration tests  Wu s Kraft �967!, Hilldale �971!, and Ramos

 l976!! ~

�! Models for estimating the consolidation settlement of clay

 Besendiz S Herrera �970!, and Diaz & Vanmarcke �974!!.

�! Finite element models for deformations of a discretized con-

tinuum  Su, et al. �969!, Cornell �971!, and Cambou �975!! .

Deterministic settlement analyses for sand typically use the standard

penetration test and empirical models. Probabilistic methods employ similar

concepts varying only in quantification of parameter uncertainty.
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Hilldale �971! develops a probabilistic model for total and differ-

ential settlement from approximate second moment analyses. Total settle-

ment is the summation of individual layer settlements from an elastic dis-

tribution of stresses. The spatial correlation of layer compressibilities

employs exponential decay autocorrelatian functions. For a vertical

stress increment i , layer thickness Z., and coefficient of volume change
V. i

1

M for the ith layer, Hilldale gives the moments of total settlement as:
v,

1

n

E[p] = Z a Z, K[M j
vi 1

�. 40!

n n

V[pl = [: [ a i Z.Z. ~V[M [[[[M 1 [[
i=1 j=l i jv. v. x 3 v. n M rM

i j v. V.
3.

�.41!

E{P] = Z~ 6' c ]E F] / E N
vra avg

�.42!

COV<~] = PCOV<q j'+ C0V{F] + COV[N ]
,a avg

�. 43!

Although developed for the standard penetration test, estimates of the

mean, variance, and covariance of compressibility using any measurement

technique could be used.

Ramos �976! presents a probabilistic version of the empirical

Terzaghi and Peck �967! settlement equation to include uncertainties in

the model, penetration resistance, and induced load. Using a multivariate

approximation and assuming the variables are mutually independent, the

expectation and coefficient of variation for total settlement are given as:
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where ~ K* = deterministic coefficient for effects of water table and

embedment

= applied vertical stress
vga

N average standard penetration test resistance over B below
avg

the footing

F = model bias correction factor  E[F] = 0.28, COV[F] = 0.4!

Wu and Kraft �967! employ an earlier Terzaghi and Peck �948! empiri-

cal correlation for the load necessary to cause amaximum settlement of one

inch. Based on limited evidence, penetration resistance and model un-

certainty are assumed to be Normally distributed. The distribution of

load necessary for one inch of settlement is then derived.

Resendiz and Herrera �970! and Diaz and Vanmarcke �974! develop

second moment probabilistic models for consolidation settlement of clay,

These models follow traditional deterministic settlement methods using a

layered soil profile and compressibility parameters from oedometer tests,.

Resendiz and Herrera, however, neglect the spatial correlation of compre s-

ibility. Moments for total settlement are similar to those given by

Hilldale �971!, except p = 0 for all i j j. Depending on auto-
M, M

v, V.
1correlation distance and layer thicknesses, this assumption leads to undcr-

estimates of the settlement variance: A more comprehensive treatment is

given by Diaz and Vanmarcke. This model yields first order approximations

with consideration of the spatial correlation of several soil properties

 c , CR, RR! and soil-structure interaction. The model is, of course,

more difficult to apply than those treating only compressibility as a random

var iable
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E c  e!! = c E[<e!!! �. 44!

where  8! is a vector of random variables containing modulus and Poisson's

ratio. The results also indicate uncertainty in the stresses can exceed

uncertainty in the rock properties.

The application of probabilistic techniques to finite element models

has received some attention. Cornell �971! describes the basic method

of applying second moment analyses to finite element models. Cambou  l975!

also discusses second moment analyses for finite element models and illu-

strates the effects of uncertainty in modulus and Poisson's ratio on

stress and strain for a simple four element mesh. In particular, Cambou

concludes the uncertainty in stress and strain can exceed the uncertainty

in soil parameters. Uncertainty in vertical displacement, however, appears

relatively insensitive to Poisson's ratio.

Su, et al. �969! present a linear elastic finite element analysis

of stresses around an underground opening with a stochastic simulation

of rock properties. Modulus and Poisson's ratio are randomly generated for

each element from normal distributions. Although unrelated to settleme"..t

problems, the results suggest an important conclusion applicable to approxi-

mate second moment analyses. For coefficients of variation as large as

0.20, the simulations show that stresses derived from expected values of

uncertain parameters are not significantly different  statistically!

from the expected stress from simulation:



Formulation of Settlement Models

The review of previous studies suggests probabilistic models are

essentially extensions of deterministic procedures. The same design models

are used, but the parameters are treated as random variables. Consideration

of uncertainty is usually limited to inherent spatial variability and

measurement error. Although some attempts have been made to include model

uncertainty  Ramos, 1976 !, it is usually neglected.

Except for the finite element models, current methods are one dimen-

sional. Equations expressing the mean and variance are only a function of

properties below the point of -' interest. In other words, the equations of

uncertainty are integrated over a line. In a two-dimensional formulation,

moments are obtained by integration over the two-dimensional profile

 Figure 5.23! . Current probabilistic models use a deterministic distri-

bution of stresses. The stress increment is typically calculated from

elastic solutions for a homogeneous profile. Finite element models distri-

bute stresses as a function of the randctm soil properties.

Soil properties for design are usually estimated from a number of

laboratory and field tests. These tests provide a mean and variance for

soil properties in each layer in a one-dimensional model or each element

in a two-dimensional model.

Specimen dimensions are much 'smaller than the correlation distance of

most properties. As a result, properties within a specimen are highly

correlated. The dispersion of soil properties among specimens, therefore,

is approximately the same as the dispersion of soil properties among

points.
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E[<u>.] = E'[u,]
i

�. 45!

b b

U [<u>. ] = 2 f f C [u,,u, ] de,. de.
2 i i 1 1

a a

�.46!

b d

C[<u>.,<u>,] = f f C[u.,u.]dk. di.i' j liLj a c i' j i j �.47!

Instead of modeling soil properties as a continuous process, Diaz and

Vanmarcke  l974! present a convenient discritized form of Equations 5.45

through 5.47. For a known point  specimen! mean E[u.]. variance V[u,],
i

and correlation coefficient p , the spatial moments for homogeneous
u pu,

layers of constant thickness are:

E[<u!.] = E[u,]
1 i

�.48!

l n n'

K Z pu.
albl a b

Uf<u>.] = U[u.]
i i n

�.49!

1 n n

2 E E pu.,u.
a=1 b=l a b

C <»>.,<u>.! = ZV[u. IV[u ]
i' j i j n

�.50

where n is the number of specimen size sublayers in each layer. Equation

5.49 shows the spatial variance ta be equivalent to the product of the

Settlement models discretize the soil profile into volumes much larger

than the specimen dimensions. For any soil volume, therefore, spatial

moments rather than point moments are necessary. Consider some soil

property, u, to be a continuous function varying with depth as described

by a one-dimensional  line! stochastic process. As shown by Papoulis  l965!,

the spatial moments are:
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point variance and a correlation coefficient correction factor. Diaz ard

2Vanmarcke �974! treat this factor as a variance reduction factor, I'
u

2

V[<u>.! = V[u.]I'
i i u �. 51!

or

CO V [<u>, ] = CO V [u. ] I'
i U.

1
�. 52!

For perfectly correlated properties, P = 1.0 for all a and b and
'u. g U.

1 3
aectly uncorrelated properties, p = 0.0 for all

i
Actual soil properties have layer variances between

2
I' = 1.0. For perf

u
2

a P b and I' = 1/n.
u

these extremes:

V [u.]/n V l<u>.] = V fu.]
i i l �.53!

The variance reduction factor is a function of the specimen thickness, layer

thickness, and correlation coefficient. Similarily, spatial covariance can

be written as:

2
C [<u>.,<u>. ] = V [u. ] V [u. ] Vi' j u,

i~ j
�. 54!

a spatial covariance. The covariance reduction factor is a function of the

specimen thickness, layer thickness, correlation coefficient, and distance

between volumes in layers i and j.

Two dimensional finite element models require evaluation of spatial

moments for various element geometries and configurations. If the point

2
where 7 is a covariance reduction factor modifying the point covariance to

u



'- 218�

 specimen! mean, variance, and correlation coefficient are known for some

property u, the two-dimensional spatial mean and variance for homogeneous

elements are:

E[ u>,] = E[u,]
i i

�.55!

V[<u>. ] = V [u. ] I'
2

i i u
�.56!

where I' is now taken as a two-dimensional variance reduction factor.

Figure 5.23 illustrates the variance reduction factor for a typical

triangular element. Both isotropic and anisotropic autocorrelation show

2
increasing I' with increasing b/a for a given ratio of R /X or R /X. This

u O V

trend results since an increase in b/a for a given element dimension X

increases the correlation between point within the element. As the cor-

2
relation increases, I' approaches one.

u

Similarily, two-dimensional covariance reduction factors are shown

in Figure 5.24. A typical element configuration is shown. The simulations

are also compared with two approximations. The approximations exp -D/R !
0
2

element centroids to determine 4
u

or exp -D'/R ! use point variances and
v

2
The second approximation, I' exp -D/R !

u 0
or I' exp -D'/R !, uses spatial

2

U v

Two-Dimensional Settlement Model

Modeling settlement by a linear elastic two-dimensional finite clem nt

variances and element centroids. The degree of approximation varies with

how well the correlation between centroids represents the correlation

between all points within the elements. The distribution of points around

the centroid, therefore, is as important as the distance between centroids.

As the correlation within an element increases or as the correlation between

elements decreases the approximation improves.
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model requires solution of the system of equations  Zienkiewicz �971! !

[K]{p! = {P! �.57!

Equation 5.57 relates the vector of unknown displacements {p! to a vector

of forces {p! through the global stiffness matrix [K]. The expectation of

the displacement vector from a first order approximation is:

E {p	 = E[K] {P! �.58!

[K] ~ + � {P!3{ ! 3[K] 3{P!
3 M!. 3<%! 3 <M!.

i i i

�-59!

The force vector {P! is independent of modulus reducing Equation 5.59 to;

{p!
3 p! 3 [K]
3<M>. 3CH!.

i 3.

�. 60!

Rewriting Equation 5.60 for 3{p!/3 M>. gives:
i

3{p! �-1 3[K]3 M. = � '"' 3 M "'
L

�.61!

-1
Substituting the terms [K] {p! for {pk yields:

3{p! [K]-1 3[K] [K] 1{ k
3  M!.

1 i

�.62!

First order approximations for the variance and covariance require

partial differentiation of the displacement vector with respect to modulus.

Differentiating Equation 5.57 yields:
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The solution of Equation 5.62 results in a n x m matrix of differen-

tials of the form:

3p

3<M>
1

3<M>
2

3 <M>
3

3<M>

3p 3p

3 <M>
�.63!3<M>

1

'n
3<M>

1

pn
3<M>

3pn

2

where n is the number of displacements and m is the number of elements

within the finite element mesh. With this matrix of differentials the

n x n covariance matrix for total settlement is obtained from the first

order approximation:

3p
C [<M>., <M>, j

3<M>.
j.

E«M>.]
j

m m 3Q
Cfp,p 1 " -.z .Z

k R i=1 j=1 3<M>,
i

E <M>,]
i

�.64!

The major difference between one and two-dimensional models is apparent.

One-dimensional settlement is a function of vertical stress, layer thick-

ness, and soil properties along a line below points of interest. Two-

dimensional covariance is a function of the stress, soil properties

and size cd each element in the soil profile through 3p /3<M>..
k i
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x

k =,E  M> a P.
s,t a=l i i i

� 65!

3<M! i=l i ig
�. 66!

where k is a term in the global stiffness matrix [K], x is the number
s,t

of elements contributing to k , and a . and g. are coefficients from
s,t i i

element dimensions and Poisson's ratio.

Assuming Poisson's ratio deterministic results in an underestimate

of uncertainty. As shown by Cambou �975!, however, the uncertainty in

settlement is relatively insensitive to Poisson's ratio. Specifically,

for a deterministic modulus and random Poisson's ratio, Cambou indicates

COV[p] /COV[p] = O.l5 and for a randdm modulus and deterministic Poisson's
i

ratio COV[p]/COV[M] = 0.80. Although these results are particular to

Cambou's model, the relative insensitivity of settlement to Poisson's ratio

is apparent. Alternatively, similar results can be qualitatively shown

fram a second moment analysis of elastic solutions for settlement.

Second moment finite element analysis extends deterministic solutions

to yield expressions of uncertainty. Indeed, for a first order approxi-

mation of iE[[p],', no additional computation is necessary. The global

stiffness matrix only requires evaluation at the mean of modulus for each

element. Formulation of the differential matrix and covariance matrix,

however, introduce considerable computations. Treating Poisson's ratio

deterministically simplifies these calculations. The terms of the global

stiffness matrix reduce to the form:
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Expressing vertical settlement in the typical form  Poulos and Davis

�974! !:

 l - v !
2

�.67!

2 4

V[p] COV[M] + - COVEY]
GEM] M

2

2

+ E Eu] COV [M] COV [v] p
E [M]

u,M
�.68!

Assuming p = 1.0 for maximum uncertainty and using > = 0.33 for
v,M

illustration, Equation 5.68 becomes=

[p] = E�.90 COV[M] + �.05! COV[v]

+ �. 40! CO V [M] CO V [u Q �.69!

This result, although qualitative, indicates that uncertainty in settle-

ment is relatively insensitive to uncertainty in Poisson's ratio.

Dif ferential Settlement

For this study the definition of differential settlement is  Figure

and taking a first order approximation for variance yields the expression:
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To separate the symmetric settlement component from differential

settlement it is convenient to express Ap for nodes i = l and j = 5

 Figure 5.25!,

Since differential settlement is an absolute value, distribution

assumptions are necessary. Taken the settlement difference,

�.7l!

to be Ap a H�, V[dp ] !, the moments of b,p becomeR ' R

E[ap[ = ~2/r p[ap [
R

�. 72!

�.73!V[hp] =  l � �/m!! V[hp ]

~Anal sis of settlement Uncertain'

This section presents a comparison of one- and two-dimensional

models for a uniform vertical strip load. Consideration focuses on two

soil prof iles:

�! Homogeneous, constant mean modulus with depth

�! Nonhomogeneous, modulus increasing as the square root

of depth

models.

In both cases poisson's ratio is deterministic. A value of 0.33, typical

of many sands, is assumed. For each profile the models are compared for:

 l! the moments of total settlement, �! correlation of total settlement,

and �! moments of differential settlement. The effects of isotropic

and anisotropic autocorrelation are considered for two autocorrelation
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Profile boundary conditions and first order approximations to the

expected value of settlement are shown in Figures 5.25 and 5.26. The

coarse mesh and tight boundary dimensions minimize cost and computation

recyxirements. Elastic solutions indicate the stress on any boundary is

L5% of the applied load. In this regard, the finite layer approximates

a half space. The base is a fixed boundary. Lateral boundaries provide

horizontal restraint but allow vertical displacement The one-dimensional

model uses the same base depth to facilitate comparison. For both

profiles the one-dimensional model yields expected values of settlement

which are 20% to 30% larger than those fram the finite element model.

Comparison of the finite element model with half-space and finite layer

solutions shows good agreement.

Comparisons of one- and two-dimensional models for a homogeneous soil

profile are shown in Figure 5.27 through 5.29. ResuIts are normalized

to the coefficient of variation COV[M], autocorrelation distances R or
0

R , and the fcundatiOn width B. Element COvarianoe is apprOximated by
v

applying the autocorrelation function to element or layer centroids.

Autocorrelation functions are shown on the figures.

Figure 5.27 presents a comparison of COV[M] and C0V[p] for isotropic

autocorrelation structure. Several characteristics emerge:

�! For R /B 0 anh R /8 ~ , COI/[p] = 0 and COV[p] ~ COV[M]-
0 0

These correspond to perfectly uncorrelated and correlated

values of modulus.

<2! For other values of R /B, COV[p] is a function of the model.
0

The one-dimensional model consistently yields larger values

than the two-dimensional model.
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�! The COV[p] 's for different points on the foundation are not

the same. The maximum difference is 10% and varies with R /B.
0

This difference is neglected.

Correlation matrices for five points along the foundation are shown

in Figure 5.28. In each case, two-dimensional correlation is much larger

than one-dimensional correlation.

Differential settlement is shown in Figure 5.29. Larger variance

and smaller correlation in the one-dimensional model result in larger

differential settlement. Both models display the interesting result of a

unique value of R which results in the largest differential settlement.
0

This "worst" autocorrelation distance occurs for R /B of 0.75 to 1.0. For
o

R /B = 0, perfectly uncorrelated moduli, or R /B+~, perfectly correlated
0 0

moduli, dif ferential settlement is zero.

Anisotropic autocorrelation effects on differential settlement for

"h == 10R are shown in Figure 5.30. Figure 5.31 shows the minor effect of
v

changing the autocorrelation model.

Comparisons of one- and two-dimensional models for the nonhomogeneous

profile are shown in Figures 5.32 Analyses are identical to the homogen-

eous soil profile.

While similar characteristics exist, three specific differences emerge.

The nonhomogeneous profile yields larger COV[p] for the same COV[M]. The

maximum difference is 25%. Settlement correlation is also smaller in the

nonhomogeneous profile. Larger variance and smaller correlation produce

a larger differential settlement influence factor. The actual moments of

differential settlement depend on the value of modulus. For F[N] = E[M ],
0
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the nonhomogeneous profile differential settlement is greater.

The reason for these differences is apparent. Covariance depends

more on soil elements near the foundation than distant elements. Small

values of modulus near the foundation, therefore, increase covariance

proportionally more than the larger distant values of modulus decrease

covariance. The net result is an increase of uncertainty in total settle-

ment and larger differential settlement.

Conclusions from Sroohasric~nnal sis

From the two-dimensional analysis of stochastic variability, the

COV of total settlement for appropriate magnitudes of the autocorrelation

distance  taken as 30m compared to a foundation diameter of lOOm, yie3ding

r jB = 0.30! would appear in the range of 30% of the point COV of sedimer t0

properties. The expected differential settlement as a ratio of total

settlement would appear to be about l5% of the COV of sediment properties,

and the COV of Ap about 75%. Anisotropic correlation lowers these COV's

somewhat, and nonhomogeneous moduli  increasing with depth! increases them.

5.3.3 Effect of Nonhomogeneities on Settlement

The George's Bank site may contain clay or peat inclusions deposited

during glacial periods, and given the inefficiencies of geotechnical

exploration to detect such inclusions their effect on settlement uncertain-

ties were considered. The model for doing so is somewhat crude, but leads

to a first approximation of the effect. More refined models were consider-

ed unjustified in a generic analysis of the sort presented here.

Figure 5.33 shows the posterior probability of undetected anomalies

existing as a function of the search efficacy of site investigation. Let
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this probability be p. Assuming the spatial density of such inclusions

to be zero. The size of such inclusions, based on accoustic profiles

may be about lOm in breadth and as a first cut the size was assumed fixed

at this breadth. The location within the sediment profile was assumed

random and unformly distributed  Figure 5.34!.

Taking the cross section of the inclusion to be approximately ellip-

tical, the differential settlement of the foundation given an inclusion
I

centered at  X, Z ! is shown in the figure. Propagating uncertainty in
0 0

 X, 2 ! through the analysis yields the estimate of inclusion-induced0 0

differential settlement shown in Figure 5.3S.

Relaxing the assumption of known breadth, inclusion size could be

considered uncertain with the same mean. Given lack of information on

the distribution of inclusion sizes, the one parameter exponential distri-

bution

f b! ~ � exp -b/b !
l

b o
o

�. 74!

was adopted. Here the mean breadth, b , was assumed to equal lOm. This
o

is an arbitrary assumption the primary purpose of which was to test the

sensitivity of differential settlement predictions to uncertainty in

inclusion size. The result is also shown in Figure S.35. Obviously, any

increase in input uncertainty increases the predictive uncertainty, but

the prediction seems not overly sensitive to such changes. The main

effect remains the probability that an inclusion exists, and this must be

estimated from analysis of the site investigation program, as discussed in

Section 4.3 5.

to be low, the probability of more than one underlying the site was assumed
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5.4 Dynamic Loading and Sediment Behavior

Most analyses in the present work, as in practice, consider psuedo-

static loading under wave action. The reality is, of course, different.

As a wave moves past the structure it first exerts force in the direction

it is moving, and as it passes the structure it exerts force in the reverse

direction, Thus, during a storm the structure is subject to many hours of

repeated loading, comprising in total perhaps a thousand or more cycles.

The sediments beneath the structure experience cyclic stress reversals of

about equal magnitudes during this period, and may behave differently

than under static loading.

From extensive work in earthquake engineering it is well known that

sands, particularly uniform fine sands, consolidate under cyclic loading.

If the period of the cycles is short or if the soil has low permeability,

this consolidation leads to an increase in pore water pressure which

does not dissipate. Effective stresses drop correspondingly, and if the

Loading continues, eventually the sand liquifies. In the case of off-

shore structures, however, shear failures or large deformations will occur

before liquifaction, when the effective stresses are sufficiently reduced

and strength correspondingly decreased.

While the phenomenon of pore pressure build up under cyclic loading

is well recognized, procedures for dealing with it in design and analysis

are not widely agreed upon  e.g., Seed, l979; Peck, L979! Experimental

results are sensitive to procedural effects, and the primary analytical

models are based on simplified assumptions of linear superposition  Bjer'rum,

1973!. Correlating laboratory measurements to field conditions is made
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difficult by the importance of soil fabric to cyclic behavior  Casagrande,

1971!, the disturbance introduced in sampling from sand strata, and the

imprecision of index properties such as relative density  Tavernas, et al.,

1972!. Reliability modeling will not significantly improve this situa'tion,

as the central problems are ones of mechanistic understanding and not

deductive reasoning or quantification of nebulous uncertainties.

The present work has dealt with reliability under dynamic loading

only to the extent of incorporating uncertainties in the most widely used

event-model, and propogating these uncertainties through to the predictions.

For the present, the question of model uncertainties in these predictions

seems beyond analytical treatment, and is not incorporated in the reliability

calculations. It must be strongly emphasized that the historical record

of empirical verification necessary to quantify such inductive uncertainties

is almost wholly missing in the case of cyclic effects on sediments under

wave loading. Therefore, the conclusions here are at most lower bounds

on the actual uncertainty in predicting foundation behavior under these

conditions and must be considered tentative.

5.4.1 Pore Pressure Development

Typical results of constant volume cyclic direct shear tests on

saturated dense sands are shown in Figure S.37. Starting from an initial

effective consolidation stress a ~ the shear stress t is cycled positively

and negatively about zero and resulting deformations and pore pressures

recorded. With each cycle of loading the pore pressure increases incre-

mentally as the sand grains reorder themselves, and the deformation of the

sample increases. Empirically, the increments of pore pressure increas'e
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are approximately constant with increasing numbers of cycles, leading

eventually to very large deformations of the sample and failure.

The incremental increase of pore pressures per cycle normalized by

the consolidation pressure is defined as

5u

N
o

�. 75!

and assumed constant over N. The exponential dependence of g on the
u

magnitude of the cycled shear stress T/a ' is shown in Figure 5.38 the
0

5.4.2 Single Storms

The basic model with which pore pressure development beneath a

structure is predicted is the analogue to the Palmgren-Miner formula in

fatigue studies. That is, increments of pore pressure development are

assumed independent and additive with magnitude proportional to the 8

higher 5 's corresponding to virgin samples, and lower 8 's corresponding
u

to samples previously experiencing shear stress cycling.

A number of factors affect this generation of pore pressure  e.g.,

Castro, 1969!, and laboratory testing itself is subject to systematic

errors  e.g , as noted by Casagrande, 1971, 1980 a redistribution of water

content occurs in the sample causing misleading results!. Recently

Hedberg  l978! and Finn, et al. �979! have shown the effect of

cycling shear stressess about stress states other than v = 0, such as

point B in Figure 5.37. For the present analyses, however, the assumpLion

is made that pore pressure generation is linear in number of cycles and

log-linear in cycled shear stress magnitude, and that only the value of

8 , is in question.
U 1
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of the respective individual wave t. Thus, for a time streams of wave

heights H1,..., H inducing shear stresses T ,...,r the total poreu 1' 'u

pressure increase in the foundation sediments is taken as

m

hu =,Z f3, c
1=1 u r,

1

�.76!

To predict hu for a particular storm, and therefore the reduction

in foundation strength, all that needs be known in addition to
'u g T

c

is the distribution of wave heights and number of waves. From Section

3.1.2 the distribution of wave heights given the sea-state parameter H
c

has a Rayleigh form.

The number of waves in a storm depends on the duration of the stoM,

D, and the period of the waves, T, through the joint distribution f D,T H !.
c

Assuming that pore pressures dissipate between storms and that bu reduce'

with exposure to storms, only severe storms with large H are of interest.
c

Few data have unfortunately been analyzed on storm duration. As discussed

in Section 3, extreme storm occurrence seems well modelled as a Poisson

process  Russel and Schulller, 1971!, and Houmb �971! has suggested on

this basis that duration may be exponentially distributed. Latter analyses,

however  Houmb and Vik, 1977! seem to support more a Weibull distribution

of duration for a given sea state H , with exponents in the range of 0.5
c

to 0.8 depending on H  Figure 5.39! . No empirical work on dependence
C

between T and H was found, and in subsequent analyses the relationship
c

is taken as independent except through dependence of the joint pdf of

 T,H! on H . Build-up and degradation of the storm  Figure 5.40! is ignored.
c

Also, given the large number of waves in a storm  i.e., thousands for a
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long lasting storm on Georges Bank! the dispersion of total number about

its mean, due to variations in wave period, is very small and ignored.

Thus, for a storm of given duration and characteristic wave

height the build-up of pore pressure beneath the foundation is

8 T H! f  H H !dH
Au D

T p u~c C
U
0

�.81!

where T is the average wave period, v H! the loading transfer function,

and f H~H ! the distribution of wave height. Substituting Morrison's
C

equation for t  H! and the dependence of 8 on H of Figure 5.38, and
uq7

then integrating with respect to H gives

du

a
0

2Da �.82!
bvHc

T [2 � � !
1

d
0

where ~ = a exp b</<x ! . For the Georges Bank test case this becomes
u~7 0

ALI 2D�. 7xlo !
-4 2,

T�-2.2xl0 H
Q c

�,79!

For a randomly occurring storm D and H are dependent Weibull

distributed variables, and therefore an analytical transformation into

a pdf on Au/a is difficult. Springer �979! has presented a solution for
0

independent Weibull variables, but this is inapplicable to the present

case. Therefore a first-order second-moment approach was used to
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calculate means and variances for pore pressure build � up. For a randomly

occurring storm this yie1ds:

E  hu/c ! = 0. 10
0

1
U hu/o ! = 0.0009

o

for the statistical descriptions of duration and characteristic wave height at

the Georqes Bank site, and for the case of simple shear sliding of the

foundation.

5.4.3 Recurrence Relations

Making the arbitrary assumption that pore pressure build up is

itself logNormally distributed, moment estimation leads to

f Au/o ! w A -2.56, 0.77!
0

-1
with a Poisson frequency of occUrrence of A = 0.4 yr , annual exceed-

ance probabilities are shown in Figure 5.41.

5.4.4 Failure Probabilities

To relate pore pressure build-up to increased probabilities of

failure the joint distribution of maximum wave height H and pore pressure
m

change Au/c must be considered in conjunction with some failure criter-
0

ion relating H and bu/c to performance.

The simplest way to do this is simply to assume a design storm in

which, say, the 100-yr. wave height occurs near the end.
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At this point the pore pressures are the highest and reliability can be

calculated by adding this uncertain pore pressure to the models of

Sections 5.2 and 5.3. Obviously, H and Au/c
m 0

commonly depend on H and
c

D, and thus should not be treated as independent, but this introduces few

problems.

A mOre realiStiC treatment and leSS COnserVatiVe aSSumptian iS tO

assume that H can occur at anytime throughout the storm. Thus the ex-
t

pected Au/a at the point when H occurs will be on the order of half
0 m

that at the end of the storm.

In the present work no attempts were made to perform such analyse's,

as the basic mechanisms of pore pressure devel.opment under cyclic loading

are poorly understood, and the intent of this direction of investigation

was primarily to evaluate the magnitude of uncertainty internal to the

current method.

5.5 Uncertainty in Predicted Performance

From the above discussions only conclusions on uncertainties in

predictions of dynamic performance derive in large measure from limited

mechanistic understanding and to that extent have not been treated here.

For well known bottom conditions and sediment parameters, the cov

of predictions of limiting equilibrium stability under static design loads

is estimated to be about 30%. Typical uncertainty about sediment param-

eters increases this COv to 60 � 70%. The COV of predictions- of total

settlement with well known sediment properties is thought to be about 40%,

rising to 60t with parameter uncertainty. Respective COV's for differ-

ential settlement are thought to be about 30 and 50%.
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6. RISK ANALYSIS

In treating uncertainties of loading and response formally, the

question ultimately arises of how they should be aggregated into overall

risk and what the risks are. While this would be the ultimate goal of

risk and reliability analysis, it is rarely reached. This section addresses

current approaches to risk analysis of the geotechnical performance of

offshore structures, and what such analyses lead to. The conclusion of

this section is that, while much attention has been addressed to geo-

technical risk analysis, the difficulties still to be faced are great.

More limited goals than complete risk characterization must be accepted

if the benefits of such analyses are to be realized.

The following subsections treat in turn the uses and categories of

risk analysis, its theoretical structure, the question of aggregating

uncertainties into system performance, and finally attempt to define a

role for risk analysis in offshore design.

6.l Uses and Categories of Kisk Analysis

Current views on risk analysis for civil works can be broadly

grouped in three categories. It is seen alternatively as:

l. A farmal prOCedure With which tO aggregate riSkS defined with

respect to some objective function, ultimately to allow as

optimization of design and construction decisions.

2. An analytical procedure to allow relative comparisons of un-

certainties from different sources and in modes of behavior,

and to allow their propagation through engineering calcula-'

tions to assess cumulative effects.



- 250-

3. A set of models for studying individual modes of performance

to estimate from data analysis and theoretical reasoning the

reliability of each separate component a subsystem.

As Reviewed in Section 2, most current applications are of the third

variety. The present study is an attempt to move toward the second. With

few exceptions  e g., Fjeld, et al., 1978; Moan 1979!, none of which deal

primarily with structural or foundation performance, no comprehensive

risk analyses of the first type have appeared. At current levels of

mechanical understanding of geotechnical behavior and based on the current

empirical record, such comprehensive analyses do not seem possible or

even desirable. This point is taken up further in Section 6.5.

Zn contrast to these views are the needs of various clients of risk

analysis, which have forced applications into areas for which the models

are poorly suited or inappropriate. The most congruent needs are those

of the designer, primarily concerned with the magnitude of uncertainties

in input parameters and how uncertainties propagate through engineering

calculations. Less congruent are the needs of the owner and insuring

consortium, wanting quantified predictions of frequencies of failures and

associated costs. These approach what analysis can in fact provide, in

considering how design changes marginally reduce probabilities or conse-

quences. Finally and perhaps least congruent are the needs of government

regulators, carrying the public trust of ensuring that the probabilities

and consequences of accidents causing harm to the environmental, social,

and financial well being of the public are acceptably low. These latter

needs require the comprehensive analysis of type 1 above, extended to

include detailed prediction of multiattributed consequences of adverse
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performance  e.g., pollution, cost, injury or death, loss of use! .

In defining a role for risk analysis in offshore engineering there

must be basic criteria against which it is to be judged. These have to

do with its relevance to decisions, its integrity, and its vaLidity

 Latai, 1977!:

l. It should be a practical tool; as such, it should answer

questions that are relevant and important.

2. It must be based on a clear statement of the questions to be

answered and the risks to be analyzed It must reflect a pro-

found understanding of the system being analyzed.

3. It must itself be reliable, in that independent groups of

analysts should reach approximately the same conclusions when

using the same method.

Most current risk analyses only partially satisfy these requirements.

6.2 Structure of Risk Analysis

This section reviews the general organization of risk analysis,

focusing on the components and their interrelationships.

Aisk may be defined in a general way as a vector p =  p , , pI' ' n

of probabilities of occurrence of adverse behaviors in n limiting states

or modes, and an associated vector c =  c..., c ! of consequences con-1' ' n

ditioned on the occurrence of one or more of the limiting states. The

components of p and c are not necessarily independent, and the com-

ponents of c may be multiattributed  i.e., themselves vectors! . To

simplify analysis this vector pair is usually replaced by a summary measure,

the most common of which are a marginal pdf on consequence cost and the
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u x

Fig~re 8. 2 -- Paradigm of Risk Analysis  adapted from
Bar net t, 1974!,
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product of probability and consequence summed over the limiting states

 i.e., expected consequences! . For the latter, a non-linear objective

function in the sense of cardinal utility  e.g., Keeney and Raiffa, 1976!

is sometimes introduced to incorporate risk aversion. For the present

work ask is taken to be the product of probability and consequence,

whether taken directly or transformed into utility. This is in keeping

with the civil engineering literature, but differs from usage in, e.g'.,

insurance  Btihlman, 1970! and environmental safety  Lowrance, 1975! .

The paradigm of risk analysis is shown in Figure 6.1, around the

three fully enumerated spaces which compose its basis: a space of

design alternatives 9, states of nature  !, and limiting states X. X is

an uncertain mapping from 'D x Q, and has an objective function u x!

defined over it. The important thing to note is that the spaces must

be fully enumerated. Any limiting state, state of nature, or consequence

not specified cannot be included in a risk analysis. Since it is never

possible to do this, risk analyses are necessarily incomplete.

The uncertainties leading to risk enter in the transformation from

0 x 0 to X, and in uncertainty about Q itself, specified as a probability

distribution over the elements 0 s  !, f e!. This latter uncertainty can

be reduced by gathering information, which in the familiar Bayesian

procedure enters through a likelihood function L z 9! on the information
0

z, multiplied by a prior distribution f  9!, to give an updated posterior

distribution f' � ~z! . For the present purpose, f  9! is said to represent

statistical uncertainty, and f  xcX ~ azo, eeD! to result from reliability

analysis. The data z may be from site characterization studies, material

testing, hydrographic measurements, or the like, and the function L zl 9!

is the model through which the data are interpreted.
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Beyond the obvious division into  P, Q, X!, models enter the risk

analysis paradigm in four places:

4 L  z ~ 0! � model for interpreting data,

f  x ~a,6! � reliability model,

0
~ f �! -- model for summarizing initial information,

y u x! � model of preferences for consequences.

Each of these is an abstraction, introducing assumptions, amplifica-

tions, and inaccuracies; but even more importantly, defining the

questions to be analyzed.

The paradigm of risk analysis is a logical structure which proceeds

from assumptions to conclusions narrowly, clearly, and indisputably.

The analysis is internally either right, or wrong by clearly specified

rules of mathematical logic. The purpose of this paradigm is to allow a

complicated problem to be decomposed into simpler ones, each of which can

be dealt with in isolation, and then recombined according to fixed rules

to deduce a conclusion. This forces internal consistency among prior

information, observations, predictions, preferences, and design decisions;

but the analysis itself is only internally objective.

In its entirety, risk analysis is subjective. It is clear, open,

and internally consistent; but it is not objective. Important judgments

must be made in enumerating the sets 0, Q, and X; in specifying u x!, and

f  9!; and in modeling L z I0! and f xIa,8! . All of these tasks are0

inductive.
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6.3 System Failure Probabilities

The analyses of Sections 2, 3, and 4 have dealt with specific Nodes

of failure and their respective marginal probabilities. If the goal of

quantifying overall risk is to be reached, these individual probabilities

must be aggregated into a system probability of failure or probability

distribution over the spectrum of potential consequences. This is made

difficult by two considerations First, various modes of failure share

common input random variables or are functions of distinct but correlated

random variables. Second, the sequence of occurrence of events may

influence the occurrence of modes of failure and this introduce dependencies

among the modes themselves. The reliability of a "geotechnical system" is

less difficult to deal with than that of structural systems, because it

depends on fewer distinct elements and fewer identifiable sources of

uncertainty  primarily a manifestation of the less sophisticated model-

ling in geotechnical practice! .

At present, there are two general procedures for analyzing the

reliability of "geotechnical systems." The first is fault and event free

methods and the other is here called basic variable-space method. Fault

and event free methods have entered geotechnical engineering via nuclear

safety studies and traditional reliability theory  e.g., Barlow, et al.,

l976!, while basic-variable-space methods have entered via recent work

in structural reliability  Rachwitz, l976!. The two methods treat some-

what different problems and are therefore not interchangeable. However,

each has important applications in geotechnical analyses.
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6.3.1 Fault and Event Tree Analysis

Fault and event trees are analytical techniques for estimating the

reliability of complex systems by decomposing them into components,

assessing the reliability of each, and fitting the assessments back together.

These methods have become a mainstay of present reliability and risk

analysis.

Both fault and event tree techniques use a tree structure to describe

the interrelations among components Of a system being analyzed. Fault

trees start with a particular undesired final event  e .g., "complete loss

of platform usefulness through structural collapse" ! and work backward to

enumerate all possible ways the final event could occur  Figure 6.2! .

Event trees start from some initiating event  e.g., "scour action under-

mines skirt"! and project all possible successive events following from

it  Figure 6.3! . In principle, the two techniques are quite similar.

To determine the probability of an undesired final event, whether

from the fault or event tree, the conditional probabilities of faults or

events within a chain leading to the final event are multiplied together,

and then those frcan different chains leading to the same final event are

added. For computational reasons these fault or event probabilities are

usually assumed mutually independent and dichotomous although in principle

they need not be. These are inappropriate assumptions in the geotechnical

case, where failure modes can interact and processes vary over continuous

rather than discrete domains.

The major criticisms of fault/event tree analysis are that:

1. Things are left out: For example, gross human error, unantici-

pated events, poorly understood physical mechanisms.
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2. Changes in the use or environaant of the structure are

not anticipated: For example, changes in platform loads,

3. "Common mode" failures in which redundant com onents have

correlated failure probabilities are overlooked: For

example, several members in a tower may all be fabricated

out of the same defective batch of steel or concrete,

or high currents may increase lateral loads while at the

same time scouring the foundation.

4. Time is absent: For example, the sequence of events or

faults may influence both probabilities and consequences,

but is not considered.

While the criticisms above apply to the general use of fault/event

trees, difficulties more specific to geotechnical problems are also impor-

ant. The first is that modes of failure interact with one another in ways

that are difficult to account for in f/e trees. Figure 6.4 illustrates

interaction between differential settlement and bearing capacity. Large

differential settlements change the stress distribution along the platform

foundation and thereby increase the probability of local bearing capacity

failure. At the same time, local bearing capacity failure increases the

probability of excessive differential settlements These cross influences

are generally omitted in f/e trees  also from most deterministic analyses!.

The second is that the physical faults or events may themselves be

interrelated in complex ways. For example, for bottom sediments of moder-

ate or low permeability pore pressures are sensitive to the rate of loading.

Thus, loads and resistances may be highly correlated. The simple dichotomies

of f/e tree analysis do not capture the complexity of these interactions.



Fi gur e 6. 4 -- Interdependence of de formation ana
stabi Zi ty fai Zur e modes. Zni tia Z di f fer entia Z di s-
pZacement Zeads to nonuniform pressure distribution
which Zeads to ZocaZ shearing which Zeads to further
di f ferentiaZ disp Zacement.
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The third is that geotechnical performance is usually sensitive to

peculiarities of construction or placement, and designs are often modified

during construction in response to initial behavior of the structure and

foundation. Although in principle f/e tree analysis could encompass

these facts of the problem, the first type are subtle or unknown, and the

second usually occur after the risk analyses are complete.

6.3.2 Basic Variable Space Methods

The second method for assessing system reliability is to perform

analyses directly in a space defined by the basic uncertain variables, and

to specify domains within that space for which the system has exceeded

one or more limiting states. Then the probability of reaching a limiting

state can be calculated from the probability content of the distribution

function of the basic variables outside the safe domain. Zn principle,

this technique can be applied no matter how complex or numerous the basic

variables and no matter how complicated their interactions. In practice,

computation requirements limit the applicability of the technique, and it

is easily used in geotechnical problems only due to the comparitive

simplicity of geotechnical models and their limited numbers of parameters.

Figure 6.5 shows the simple case of limiting equilibrium stability

of an unembedded foundation on cohesionless sediments with combined and

uncertain vertical and horizontal loading. From Section 5.2 an uncertain

boundary is calculated separating combinations of horizontal and vertical

load leading to instability from those leading to stability. Then the

probability of failure is calculated from the volume of the joint density

function on H,V outside either of the failure boundaries. Because the

boundaries themselves are uncertain, reflecting modeling error, a series
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of conditional probabilities of failure are calculated and combined by the

marginal distribution of the boundary locations.*

From a second-moment-point of view a reliability index 6 can be

defined by measuring the distance from the joint expected value of  H, V!

to the nearest point on the failure boundaries and normalizing this dis-

tance by the standard deviations of the variables. Operationally this is

done by rotating the reference to align with the Eigenvectors of the co-

variance matrix E of  H, V!, and renormalizing each axis by the resulting

standard deviations of the transformed variables. Then the linear dis-

tance to the nearest point on the transformed failure boundaries is the

reliability index 8  Rachwitz, 1976!. The rotation leads to a new set

of uncertain variables that are mutually independent; the normalization

to a set with equal variances. The result is a joint density function

whose density contours define concentric  hyper! spheres. Thus, linear

distances measure standard deviation units directly. In principle this

procedure can be performed in any dimensions as long as the failure

boundaries can be transformed. Computationally, a search algorithm is used

in higher dimensions to find the nearest point on the transformed boundaries

 Rachwitz & Fiesler, 1977!.

For geotechnical applications, the main advantages of basic variable

space methods over fault and event trees is that they allow easier treat-

ment of continuous variables, and that they allow clear recognition of

correlations among failure modes. The major disadvantages are first that

computational problems are encountered as the dimension of the basic variable
*An analytically simpler although computationally more difficult way to
analyze this problem is to expand the basic variable space to comprise the
variables leading to model uncertainty  i.e., N , E , I , e, of Section 5.2!,
so that in the expanded space the failure boundlriek ax% deterministic.
Then the probability of failure is defined by the probability content of the
joint distribution function f H, V, N , E , I , p! outside either of these
boundaries.

Y
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space increases, and that therefore most basic variable space analyses are

based on a reliability index measuring only the closest distance from the

mean of the basic variables to any of the failure boundaries. This carries

no information on probability contributions from other modes of failure.

Secondly, spatially varying properties, like bottom parameters, are approx-

imated by random variables in the analyses, leading to numerical errot's.

Not unexpectedly, the major objections to f/e tree analyses also can be

directed at state space techniques: things are left out, changes are not

anticipated, time is absent, and modes of failure may not be physically

independent of one another.

The most important contribution of state space techniques seems not

to be in evaluating overall system failure probabilities, but in evaluating

the various ways in which individual types of failures can occur -- e.g.,

stability failures of various sorts � and the way basic uncertainties

combine to lead to failures. probabilities estimated in this way may

then be further incorporated in f/e tree analyses or other methods of

reliability assessment.

6.4 Sources of Uncertainty and Offshore Reliability

From the initial discussion of uncertainties in Section 2 and sub-

sequent enumerations leading to summaries like that of Figure 6.3, the

principal sources of uncertainty underlying the geotechnical performance

of offshore structures are given in Table 6.l. Unsurprisingly, these

are divided into four major groups: uncertainties having to do with

environmental loads, bottom conditions, geomechanical models, and omissions

or engineering errors. Throughout this work the fourth of these categories
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Table 6'. 2 -- Principa.'L sources of' unctertainty in predictions
of' geotechnical per formaxce of of'fshore gr aui tp structures.

Environmental loads

Load transfer to structure

Bottom conditions

Strength parameters -- drained, undrained

Deformation properties

Anomalous details

Modeling

Omissions

Gross errors

Wave loads

Earthquake loads

Wind Loads

Current loads

Extraord.inary loads

Stability -- static

Deformations -- static

dynamic response

Theoretical uncertainty
Boundary and initial conditions
Structural relations

Omissions
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has been neglected, even though in practice it may be an important contri-

butor to the overall frequency of structural or foundation failure  e.g.,

Flint and Baker, l976; Yam, et al., 1980! .

From a risk analysis point of view, the interesting thing about these

uncertainties is l! their high implicit correlation, and 2! their combined

effect yielding high interdependence of failure modes. The result is

that failure through various modes of behavior are both physically and

statistically correlated. Addition of failure mode probabilities inde-

pendently can greatly over estimate system failure probabilities. Further-

more, because estimates of bottom conditions from measurements, predictions

of behavior through geomechanical models, and other aspects of design

share common assumptions, calibrating data, and other sometimes subtle

influences, the analytical combination of these uncertainties under an

assumption of independence can strongly bias systems failure probability

estimates.

In the present work a Georges Bank site has been used

as an example application. Results of the generic analyses are shown in

Table 6.2, in which the total variance in the predictions of performance

are divided by component contributions of the general classes= environ-

mental loads, bottom conditions, and models.
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Table 6. 2 -- Approximate r e l iabi li ty indi ces and var'i ance
conponente for the gener'ic analyeia o f the Geozges Bank si te

VARIANCE COHTRIBUTXObIS

loads bottom kodelMODE OF FAILURE

Stability--static

74bearing capacity 2.4 1.0

i 141O17

, 4233Excessive Settlement 25

42Differential Settlement 2533

Based only on static case with pore pressure development.

+ COV's: 8 values are a function of criterion of excessive
total or differential settlement

sliding

Stability--dynamic

8

100 yr.
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6.5 The Role of Risk Analysis for Offshore Structures

At present levels of technical capability comprehensive risk analyses

leading to overall design optimization are not possible. Attempts to produce

such analyses meet with at least three obstacles: inadequate mechanistic

understanding of important failure modes, importance of a priori

unidentified perhaps unidentifiable! geological or construction details,

and complex interdependence of failure modes. Further, given large sta-

tistical uncertainties and modeling errors, calculations lead to nominal

probabilities of failures which do not correspond to realized frequencies.

The purpose of any engineering analysis is to contribute to efficient

design, in which the frequency and consequences of failures are balanced

against design, construction, and operational costs. Risk and reliability

analyses, if seen in a more modest role than complete rationalization of

uncertainty, in fact seem to offer this contribution if used appropriately.

The purpose of their use is not to quantify uncertainty but to lead to

better design. They do this by allowing complicated problems to be

decomposed into simpler ones, which can be directly treated and recombined

in a logically consistent way.

At present, the primary roles for  geotechnical! risk analyses of

offshore structures seems to be,

l. Statistical analysis of site characterization data and the

planning of site investigation programs. This is an area of

application for which well developed mathematical results are

available, in which many  but not all! questions are well

posed, and which to date has benefitted little from techniqurs

and procedures in routine use in other branches of engineerinq.
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2. Uncertainty analysis of individual failure modes  limiting

states! and the balancing of cost against changes in reliability

indices. Even though reliability analyses lead only to nominal

probabilities, because most objective functions are linear with

respect to probabilities of failure  e.g., expected utility!

partial optimization is possible. Further, for most engineering

analyses estimates of uncertainties up to second moments are now

possible and at least the variances of parameter estimates,

loads, and modeling errors should be propagated through calcula-

tions to establish variances of predictions. Again, this prac-

tice is common in many branches of engineering.

3. The identification of individual and compound sources of uncer-

tainty to which uncertainties in predicted performances are most

sensitive. This is an exploratory type of analysis that allows

site investigation and analytical studies to be improved, whether

or not formal risk analysis is used in making design decisions.

Risk analyses allow significant improvement over traditional

sensitivity studies in that important dependencies among

uncertainties, correlations of failure modes, and the cost of

reducing uncertainty can be combined and incorporated.

Promises of comprehensive risk analysis now appearing in the litera-

ture and being made at conferences appear misdirected, in that they will

only lead to a failure of expectations by the practicing profession and

to a rejection of analytical techniques that, while not truly comprehen-

sive, do offer substantial improvements to practice. A change of
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direction of current efforts toward implementation and the development

and testing of practical tools of risk analysis would seem the best policy

at present.



- 272-

7. CONCLUSIONS

Three principle conclusions have been drawn from the present attempt

to quantify geotechnical risks in offshore structures.

First, comprehensive analyses of geotechnical uncertainties and the

risks these uncertainties lead to through imprecise or inaccurate pre-

diction of engineering performance is not now possible in the sense of

arriving at aggregate probabilities of levels of adverse performance that

may reasonably be expected to reflect realized frequencies. This does

not mean that attempts are risk analysis or that a reliability-based

approach to geotechnical analysis carry no benefit. Certain categories of

uncertainty and prediction can be rationally treated through reliability

methods even though comprehensive analyses are not possible. Central

uncertainties in offshore design stem from ignorance rather than natural

randomness, and the statistical or probabilistic statements made about

them can only be interpreted in this way.

Second, for those categories of performance about which physical

understanding is good, model and statistical parameter uncertainties

appear to be of about equal importance to overall uncertainty. Further,

the dominance sometimes attributed to uncertainties in wave loading is

not supported by the present study.

Third, for those aspects of geotechnical performance about which

physical understanding is good and for which reasonably validated models

exist,  first order! reliability indices against major adverse performance

 loss of stability, severe deformation! appear to be of the order 2 to 3.
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-4
This would correspond to annual probabilities in the range 10 to

-5lO, which appear lower than the sparce historical record  for pile

supported platforms! would suggest.

In general, the development of quantified procedures for handling

geotechnical uncertainties has advanced rapidly in recent years

Nevertheless, the promises of many proponents of such methods of complete

rationalization of uncertainty seem unattainable in light of the sub-

jective nature of many uncertainties and the inadequacy of present under-

standing of specific aspects of soil behavior. The potential contribution

of quantified procedures for assessing uncertainties and incorporating

them in analyses seems great, as long as their role within the overall

issue of design and safety is not exaggerated. The most urgently needed

work at present is to verify such methods in app1ication to actual cases.
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