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PREFACE

The research reported in this volume began as an ambitious attempt to
quantify risks in offshore structures, in partiecular gravity platforms,
deriving from uncertainties in geotechnical bottom conditions and models of
foundation performance. The work has led to something different, for among
the early conclusions of the research were that {a) present reliability
apalysis techniques and present statistical procedures for interpreting
geotechnical data are inadequate to quantify overall risks, and (b) many of
the uncertainties in offshore construction are inductive and not amenable to
gquantified analysis. Arqument against these conclusions is sure to be reg-
istered by those favoring subjective probability approaches, but for the
present work such procedures were not seriocusly investigated. This is not
to suggest these approaches to be inappropriate, only that the objectives
of the present work were directed at generic procedures for analyzing risk
and reliability, and not with the requirements of a particular project and
designer.

What has developed in the present work is an approach to the use
of reliability techniques in analyzing those aspects of the design of off-
cshore facilities that are benefited by such analyses, and a generic analysis
of such uncertainties. The predictions of risk and reliability that result
are, of course, partial. They do not include such things as negligence and
gross error, or do they include modes of performance about which basic
mechanistic understanding is lacking. However, for the purposes of explora-
tion, design and regulation they provide guantified analyses that allow
partial optimizations and rational bases for decisions.

The results of this work, therefore, do not fulfill all the original

objectives, because certain of these in hindsight were not fulfillable.



0f course, this too is a conclusion. However, current techniques of risk and
reliability analysis provide a strong analytical framework for dealing ration-
ally with many uncertainties of offshore design. This report presents those
capabilities, and summarizes data and analyses supporting this conclusion.
This report is a summary of work carried out between August 1977 and

August 1979, under funding by MIT Project Seagrant.



1. INTRODUCTION

As with any engineering project, offshore facilities inevitably involve
risks and are designed in the face of uncertainties. The recent surge in
of fshore development, particularly the move to deeper waters and more
hostile environments, has led to a situation with even larger uncertainties
than those of onshore counterparts. These uncertainties arise from environ-
mental locadings (e.g., sﬁorm wave and earthquake}, from inadequately under-
stood physical mechanisms (e.g., structural and soil response), and from in-
sufficient data to precisely characterize offshore sites (e.g., bottom param-
eter or storm recurrence rates).

These uncertainties are normally dealt with by deéigning for adequately
high factors of safety agaiﬁst chosen design loads. This is done to assure
that the available‘resistance of a structure is subtantially greater than the
loads it normally experiences, and also higher than the extraordinary loads
which may occcur in the life of the structure. However, because the loads
actually to be experienced by the structure as well as the structural and
foundation response to those loads are known only imperfectiy, no matter.how
high the design factor of safety socme prcbability remainsfthat realized
loads will exceed realized resistance, leading to partial aamage or total
collapse of the facility. The consequent costs of such failures can exceed
the immediate structural damage, through oil spillage, other environmental
impact, loss of service of the facility, aﬁd in certain casés human injury
or death.

The questions, then, are what is the magnitude of this probability of
damage or collapse, what are the significant sources of uncertainty, and

what is the marginal cost of reducing risk? The work reported here deals



Figure 1.1 == Vartous deep water gravity platform designs.



specifically with geotechnical sources of risk. That is, with the principle
sources of uncertainty affecting predictions of foundation performance, and
with the éggregate uncertainty they lead to. To limit fﬁe breédth of coverage,
the work has focused on gravity-type platforms, founded on the.ocean bottom,
held in place by their wéight. Several types of gravity platforms in place

or under construc;ion are shown in Figure 1.l1. While many offghore plat-
forms are not of'this type, being founded rather on driven pilés,'much of

the present work applies to them as well.

The evolution of offshore construction has progressed rapidly. Begin-
ning as extensions of nearby on shore facilities, offshore towers have now
been placed in over 300 m of water. While the early decades of offshore
development, particularly in the Gulf of Mexico, proceeded at a moderate
rate into deeper waters, the last decade hac seen a tripling of the depths in
which structures have been placed (Figure 1.2)}. This means that the long
history of empirical validation and trial and error design. which normally
characterize gecotechnical engineering_ are missing in much offshore work.
The prcoblem is, of course, compounded by new development in environments
such as the North Sea, Alaska, and potentially the Antarctic. This means
that much of fhe hew design is based on modeling, usually numerical, and on
extrapolation from sparse data bases,

The problem of risk offshore is complicated by the design philosophy
of many owners and constructors of offshore platforms. Given the commercial
nature of these ventures and limited design lives, there is understandably
little incentive for the highly conservative design practice common in other
large civil projects, for example, dams or bridges. Offshore facilities tend
to be designed with an attempt to rationally balance financial risk of

failure against marginal design modifications.
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Nevertheless, the historical performance of offshore facilities
has been fairly good. There have been ho substantial failures of major
gravity platforms, and the record of failures for pile supported
platforms is shown in Figure 1.3. However, the historical record for
the former is only slightly more than 10 vears, with the total
numbers of such towers increasing geometrically as time goes on.

In United States watérs, platform design has been performed primarily
in accordance with the recommended guidelines o% the American Petroleum
Institute (APT RP ZA, 1978), and more recently of the Ame;ican Concrete
Institute. The API guides are essentially extensions of American Institute
for.Steel Construction design rules (AISC, 1970), modifided by offshore
experience. The ACI guides are new design rules based heavily on the perfor-
mance of structufes in the North Sea, more of which are concrete than in the
Gulf of Mexico and other shallow regions. Neither of these éodes has the
strength of law, and the U.S5. Federal Goverpment th;ough the Department of
Interior and Department of Energy is now taking a more active stance in
regulating coffshore bonstruction. Recommended guides.like those of the API
and ACI have also been proposed in other countries, for example, by Det Norsk
Veritas and Fédération Internationale de la Précontrainte (FIP)

ORGANIZATION OF REPCORT

This main part of the report is organized in five broad chapters
(Figure 1.4). The first presents an overview of the sources of geotechnical
uncertainty in offshore structures, previous quantitative anaiysis of those
uncertainties, and the philosophy of formal methods in geotechnical reliability
analysis. The second and third examine the basic uncertain variables, dealing
with environmental loads and load effects, and with site characterization and

parameter estimates, respectively. Chapter 5 is an extended discussion of
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the problem of modeling foundation performance, and the uncertainties of
that undertaking. Finally, Chapter 6 considers the aggregation of these
uncertainties into overall estimates of risk and reliability.

To illustrate the analyses and methods developed in the course of
the work, a specific site on the southern flank of Georges Bank has been
chosen for discussion (Figure 4.12). This site had been studied earlier by
Laszlo (1976}, and was chosen for its location offshore New England, the
availability of data, and its inclusion in potentially develcpable tracts
{Bureau of land Management, 1976). Specific information on the site has been

introduced as needed throughout the report.
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2. RISK ANALYSIS OF OFFSHORE STRUCTURES

Offshore structures are designed to withstand loadings they may exper-
ience during their design life. That-design is aimed at ensuring that for
all mechanisms of failure that a structure may experience, the available re-
sistancé to fallure exceeds the realized loads. Nc matter how detailed the
process of modeling and design, and no matter how sophisticated the analysis
of empirical data or performance, design remaing an inductive task. Risk
analysis, too, remains an inductive task. The methods of risk analysis,
like other methods of engineering science, are tools for aiding human Judg-

ment and do not replace it.

2.1 Risk Analysis

Risk analysis techniques are in many ways accounting schemes. The
purpose of these techniques is to maintain logical (i.e.; deductive) consis-
tency among empirical observations, physical theory, and engineering opinion
in drawing conclusions about the performance of a facility. This is not an
unimportant task or one that is otherwise easily accomplished, despite
common wisdom. A large literature on the analysis of uncertainties and
human decision making attests to the difficulties of intuitively dealing
with, let alone aggregating uncertainties (Hogarth, 1975). Geotechnical
engineering is no exceptién (Nordquist, 1979}.

Given this task, risk analysis must be a logically structured, consis-
tent, explicit format for combining information from all available sources
and deducing conclusions which follow objectively within that format. The

format itself, however, incorperating a number of assumptions and sources of

information can never be said to be wholly cbjective.
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Criteria against which risk analyses must be based are (e.g., Latai,
1977) :

1} The results must be useable. The answers provided to questions

must be both important and relevant to decisions that have to be taken.

2} The analyses must reflect profound understanding of the systems

being studied. The questions answered must be clear and their an-

swers, to the extent possible, complete.

3) fThe analyses must be replicagle;Independent groups analyzing the

the same systems with the same méthod must arrive at nearly the same

results,
These criteria are not easily satisfied,.and much of what now passes for
risk apalysis in civil copstruction only partially achieves these goals.

The basic procedure for risk analysis cdnsists_of four steps:

I. Enumerate failure modes or "limiting states," |

IY. Select physical theories and develop models.for predicting

the interaction of events and processes.
III. Estimate prébabiiities associatéd witﬁ éveﬁts, processes, and
series of eveﬁts and processes.

1v. Establish measures for the conseqﬁences of failures.
To do these four things, the problem being analyzed must be very well under-
stoocd. The wéys in which the s&stem can fail must be describable and the
conseguences of failure must be identifiable. The problem must also be well
structured. The task of completing steps I through IV is almost entirely
inductive, The risk analysis itself only provides a reference for organizing

the results and combining them to draw consistent conclusions.
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2.1.1 Enumerating Failure Modes

The common cobjection to risk analysis is that there is no way to account
for omissions -- failure modes unthought of, or event dependencies overlocked.
This is true of risk analyses as of any other engineering analysis. The
resulting guantifications of risk are always conditional on the modeling
assumptions introduced and are therefore quasi lower bounds. This is not
a limitation of risk analysis, pér se, buf of deductive logic generally.

As opposed to many man-made Systgms like electronics, foundations for
offshore structures are "open" systems. That is, they exist within a larger
environment and possess an essentially infinite number of potential failure
modes. Most of these canncot be enumerated, and thus the_set of modes
analyzed is never exhaustive. The modes of failure chosen for analysis are
those thought to be important (Figure 2..2) ; but, they can only be identified by (i) the
experience of a failuré, (ii) constructing and opefating on a model to
deduce mechanisms of fgilure (within the context of the model), or (iii)
intuitive reasoning. There is no way of insuring that an important mechan-
ism of failure has not been omitted. In onshore practice, this situation,
in combination with the difficulty of modeling certain.behaviors, has led
to the well known "observational appro;;h." This approach has more limited

application offshore.,

2,1.2 Estimating Probabilities

The estimation of probabilities requires that events, processes, and
parameters be precisely defined. Such definitions are not innate, but
depend on the usé to which the preobabilities are to be put.. In this case
they depend on the models of site conditions and foundation behavior adopted.
Parameters, even those purported to gquantify physical properties like un-

drained strength, are only partly innate. In large measure they are
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artifacts of and inseparable from the gectechnical models they are used in
(e.g., Lambe, 1973; Baecher, 1979a).

although ostensibly based on in situ informgtion and historical data,
behind the facade of géotechnical and oceanographic technology parameter
estimates are highly subjective (Baecher, 1978). The amount of site informa-
tion is insufficient to precisely define spatial properties of the sub-
bottdm, and often allows only the first few moﬁents of spatial or temporal
averages to be calculated. Jﬁsf as for féilure modes, geclogic or hydro-
graphic anomalies must be conceived of before their probabilities of existing

can be calculated. Section 4 covers these points in greater detail.

2.1.3 Establishing Consequences

Just as for failure modes, establishing consequences is an inductive
problem in that from the éssentially infinite numberx of.éffects caused by
adverse behavior of a structure only a limited number are selected as
important for analysis. Those that are unthought of, naturally, aré_not
weighted in making deciszions.

For the purpose of design-decision in civil construction, consequences
are commonly divided into three classes: financial, environmental and
social, which in turn are subdivided in a tree-like hierarchy unfil a set
of objectives is obtained that either cannot be further subdivided or is
operational at its level of de£aii. This set of subobjectives should be
complete, in that it includes all consequences that bear on a decision;
and clear, in that each subobjéctive has unambiguous heaning.

To each subobjective somé scale of measurement must be assigned,
which in current usage are normally termed 'attributes'. An attribute

should be comprehensive in that important differences in the deqgree to which
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a subobjective is achieved are reflected in numerical changes in the attri-
butes, and vice versa. However, an attribute must also be useable, in

that measurement aléng it is possible; and undarstandable in that its
values carry meaning to the analyst or designer. Thus, approprigte attri-
butes are often difficult to define, and are often only partial correlates
to the consequences or subobjectives one actually wishes to measure.

Perhaps the central problem in developing an objective function for
risk analysis is combining "non-commensurate” consequences into a scalar
measure to be compared across design alternatives. A number of approaqbes
have evolved during the past twenty years (e.g., Zelan, 1973; Keeney and
Raiffa, 1975}, but several practical procblems remain. These problems were
seen as outside the scope of the present study, however, and are not further
addressed.

Most work to date on reliability analysis for offshore structures
has used the single dimension of financial cost for an objective function,
and minimizing expected cost as the criterion of optimality. Little work
seems to have been done on risk aversion, although one-dimensional utility

theory seems an cbvious wvehicle in future applications.

2.2 Sources of Uncertainty

Geotechnical engineefs in the course of their work are forced to deal
with uncertaintiés seldom tolerated in most branches of civil engineering
Unlike man-made materials, soil and rock masses are naturally variable and
little information is availablé with which to characterize them. Properties
measured in the laboratory may only approximately apply to in situ conditions,
and the mathematical models which most branches of engineering rely upon

are in geotechnical engineering rather poor.
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2.2.1 Uncertainties Offshore

A schematic overview of the uncertainties entering risk analyses for
offshore structﬁres is shown in Figure 2.4. As a first approximation they
are divided between loads and load effects on the one side, and foundation
response {(resistance) on the other.

Along the load side one begins with some historical record of environ-
mental conditions, e.q., observed wave heights, wind speeds, seismic
accelerations, etc. From these a recurrence model is postulated and
statistical techniques used to infer parameter values. Then a load effects
(load transfer) model is assumed, its parameters estimated from testing or
theory, and the recurrence of environmental conditions propagated through
to obtain the recurrence of foundation loads.

Along the foundation response side one begins with geﬁeral geological
data and direct or indirect measurements at a proposed site. Some model
of physical response is postulated to transform these measurements into
mechanical properties of the bottom sediments, and then a general conception
of the local geology is used as a background against which to construct
a characterization of the site for design. From this characterization
engineering properties are estimated for use in analysis and design.

The two streams of analyses are brought together in a géomechanical
model(s) of the proposed structure and its foundation (Figure 2.5). This
model is a simplified view of the real physical processes at work, choéen
to display the important interrelational properties among events and objects
of an adopted theory, to which in turn reality is thought to conform. For
such predictions as general stability against static strength failure and

deformation under induced stresses, well developed theories and associated
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Figure 2.4 -- Schematic overview of
uncertainty and risk analysis for an
offehore platform.
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medels exist. For other predictions, such as liquefaction of cohesionless
sediments under cyclic loading, theoretical understanding is poor and
widely accepted models do not exist.

From the calculations a combined risk profile is predicted which is
a quantification of those contributions to risk that can be directly
analyzed.. To these must be added professional uncertainties and judgment
about modes of beha%ior that cannot be directly analyzed, to reach a final
summary of risk of adverse performances. For design decisions this final
sSuUmmary mgst be combined with some objective function to determine actions

that are in some sense coptimal.

2.2.2 Types of Uncertainty

Thisl outline illustrates types of uncertainties associated with geo-
technical engineering. Formal analysis cannot treat all of them, and
must approach those it does.treat-in different ways,.possibly using differ~
ent techniques. As such, formal analysis is an aid to experienced'jﬁdgment,
and should be used only when it will provide insight or help maintain
logical consistency among analyses.

A separation will be maintained between inductive, deductive, and
inferential uncertainties. Usually, uncertainties are separated merely
between inductive and deductivé, but the inclusion of inferential uncertain-
ty as a separate class is convenient.

Inductive uncertainties are traditionally said to inveolve movement
from the specific to the general. From observations on a finite number of
realizations of some process one is led to general conclusions on the pro-

cess itself. Inductive reasoning is usually associated with the formatiocn
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of scientifiq theories, as for example, postulating the theory of effective
stress from laboratory experiment but it is also the reasoning leadirg
to the defelopment of a geological concept of a site from borings, geo-
physics and geomorphology. Whether peat lenses are suspected in a ccastal
profile and therefore searched for is a matter of inductive reasoning.
Leductive uncertéinties are generally said to be those moving from
the éeneral to the specific. From knowledge of the mechanisms underlying
some process and estimates of the parameters of the process, specific out-
comes oOr realizations are predicted (deduced). If the logical steps are
correctly followed, the conclusions follow cbjectively from the premises.
Deductive reasoning is usually associated with mathematical logic, for
example using the theory of effective stress to predict consolidation
~ behavior, but it is also the reasoning leading to a predictions of FS from
models and parameter estimates. Predicting the chance of finding a peat
lens of assumed size and shape at a site is a matter of deductive reasoning.
Inferential uncertainties are generally thought of as those in
estimating designed properties or parameters from a limited number of
observations. 'They are éomewhat similar to inductive uncertainties, and
some authors group the two together. Inferential uncertainty is usually
asscciated with statistical reasoning, as for example, in estimating
strength parameters from experiments. In this example, the assumption of
homogeneity and modes of failure to be analyzed would be inductive, the
estimation of parameters from borinés and tests inferential, and the
predictions of a FS from the model and parameter estimates deductive,
Returning to the previous outline, the roles of these types of uncer-

tainties can be seen. Deciding what problems to analyze, selectihg



=22 -

theories to apply, and hypothesizing the overall geclogical conditions are
inductive problems. 1If one is to believe Hume, these problems cannot be
made logical. ﬁhey involve generating hypotheses and assigning initial
degrees of confirmation to those hypotheses, and these are not logical
undertakings., They are also not illogical; rather one might call them
'alogical' (e.g., Salmon, 1964). The point-is, these uncertaintigs cannot
be formally analyzed. They are the starting point from which-éhalyses of
uncertainty must begin, For example, to predict the chance that signifi;
cant liguefaction will occur in sand profile, one must induce theories
explaining liquefaction and develop logicél relations {(models) for combining
field evidence at a particular site. Predicting liquefaction in ébsence
of a theory cannot be done formally, expect by adopting the hYﬁothesis that
it is a totally random phencmcnon, and extrapoléting the historical fre-
quency. But, even then an inductive leap of faith.is being taken.
Predicting bearing capacity from Terzaghi's superpoéitidﬁ involves
deductive uncertainty. A model is availahle,.parameteré éstimates are
available, and a prediction is mathematically deduced. Uncertainty in the
parameters ¢' and $' is propagated through the model, ahd.possibly uncer-
tainty in NY), and finally a statement of deductive uncertainty in
the predicted bearing capacity results. However, this uncerfainty is con~-
ditioned on a number of strong assumptions. For example, a sand stratum
may be assumed homogeneous; the theory upon which the model is based is
assumed to hold, as well as other things. BSince there is uncertainty in
all of these conditioning assumptions, the deductive uncertainty is only

partial —- although one cannot definitely declare it a lower bound.
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Estimating ¢', ¢' parameters, permeabilities, and the like is
inferential., From a limited number of observations the parameters are
estimated, usually étatistically. In principle, the inferential uncertainty
can be reduced arbitrarily close to zero by increasing the sample size,
but this is not actually the case. Actually, bias errors enter the
problem of inferenée, and these bias errors must usually be identified
inductively.

Formal methods of analysis can be brought to bear on deductive and
inferential uncertainties, but not on inductive-uncertainties. One cannot
ask that reliability techniques and statistical theory answer‘questions that
cannot be formally answered. These may be the questions one most wants
answered -- what is the chdnce we've omitted some important failure mode,
missed some important subsurface condition; or made a mistake -- but they

can only be dealt with by conservatism and robustness of design.

2.2.3 Taxonomy of Geotechnical Uncertainties

The outline above also illustratés a nﬁmber of specific uncertainties
common to geotechnical problems.

First, the geological subsurface is spatially variable. Somet imes
this variation is called inherent or natural randomness, but for reasons
discussed below these terms are misleading. The subsurface is spatially
variable in that it is composed of different materials which are stratified,
truncated, and in other ways separated in discrete bodies. It is also
spatially wvariable in that within an apparently homogeneous body, material
properties vary from point to point. With sufficiently many observations

spatial variation can be characterized to any arbitrary level of precision.
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With an infinite number of observations tﬁe variation could be known exactly.
Cbviously, however, the number of observations is limited by cost and time,
so uncertainty femains about matefial properties and classification at
points not observed. In reliability analysis these are often represented
by stochastic processes.

Second, because the number of measurements at a site is limited there
is inferential or statistical wncertainty in the engineering properties and
model parameters used in analyses. Measurements vary from specimen to
specimen or boring to boring because the in situ properties are spatially
variable and because the act of measuring itself introduces errors. As
sample sizes (numbers of cbservations) increase the precision with which
parameters can be estimated increases, and further, the relationship
between sample sizes and estimate precision can often be expressed mathe-
matically. 1In principle, statistical uncertainties can also be reduced to
any arbitrary level by increasing the number of cbservations.

Third, most testing procedures in geotechnical engineériﬁg introduce
bias errors in addition to random error. That is, systematic differences_
between measured and actual properties usually exist. Ladd (1977) de-
scribes a number of these in soil property measurement. Bias error cannot
be reduced by repeated testing and cannot be inferred by logical deductioﬂ
from the results of a testing program. However, 5iases can be inferred |
from éomparisons of predicted and observed performance, but as with
Bjerrum's (1963) field vane strength cofrection, the bias so inferred.comes
from all soufces in the analysis (i.e., from measurement techniques,
mechanical models, definitions of failuré, and the like). These bias
calibrations cannot always be transferred to new applications without

complete revision.
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Fourth, theories and simplifications ae required to predict per-
formance from property measurements and these introduce modeling uncertainty.
Model uncertainty ié generated because there are uncertainties over the
theory assumed to apply to the physical process being studied, there are
uncertainties in the structural relations adopted within the model,
there are boundary.and initial conditio?s chosen, and there are errors
introduced by numerical or mathematical a?proximations. Mndel uncertainty
in geotechnical analyses is widely thought to be large (e.g., deMello,
1979), and is often used as an argument for not using formal methods in
the analysis of uncertainty. This view seems somewhat inconsistent with
itself, but is returned to below.

Fifth, one never knows -- and epistomogically,_can never know =-
what has been left out of an analysis. That is, there is uncertainty due
to omissions, Any analysis is partial. The real world has properties
and interrelationships that can never entirely be inéluded in an engineer-
ing analysis. The question ié whether these things left out of the analysis
are important. This is the same for probabilistic and deterministic
analyses. Unless conditionsarehypothesized, they cannot be included ip
predictions. Many of the major failures of constructed faéilities are
due to omissions. For example, Malpasset Dam, Tacoma Narrows Bridge,
Vijont Reservoir.

Lasf, while this report coﬁcentrates on geotechnical unceftainties,
the extermal loads and conditions to which a structure is subject are also
uncertain. Thesé are uncertainties in addition to the first five, and in
probléms like seismic safety can occupy a significant place in the total

uncertainty.
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2.3 Previous Work on Offshore Risk

The amount of previous work on geotechnical reliability of offshore
structures is limited. This reflects more the state of geotechnical reliability
analysis in its entirety than the advancement of offshore geotechnics. For
example, the recent report of the ASCE Committee on Reliability of of fshore
Structures (1979) concluded that (p. 15) "Offshore gectechnical problems
appéar to be well suited for reliability technology due to the natural
vagarities of s0il deposits, the variability of field and laboratory tests,
and the uncertainties involved in the analysis of soil and foundation be-
havior in offshore environments. At the present time design and analysis are
both fundamentally deterministic, .... Prcbabilistic methods have just
begun to be applied to offshore geotechnical problems."

Much of the work in geotechnical (and structural} ;eliqbility analysis
for onshore facilities is applicable offshore, and is reviewed as needed in
other parts of this repo;t. Here, only that work expressly devoted to off-
shore structures is reviewed.

Early work on offshore reliability analysis, primarily of.strﬁctural
systems but also of pile performancé. was presented by Marshall (1969) in a
paper which remains useful. Marshall's interest in the 1969 papexr was
primarily pile supported structures in the Gulf of Mexico. He divided the
structural response of these platforﬁs into three subcomponents —— the struc-
tural frame, axially loaded piles, and laterally loaded piles =-- and pre;
sented distributional information on each (Figure 2.6). However, no attempt
was made to combine these into probabilities of gystem resistance. Uncer—
tainty in wave loading for a given wave height was expressed by a probability
distribution over the ratio of actual (i.e., measured} load tohpredicted

load for given waves heights, measured on platforms exposed to Hurricane Carla.
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For a given wave loading the system probability of failure was taken as the
sum oflthe three component probabilities. The return period wave and factér
of safety for design were optimized using expected financial cost—assuming'
total failures. Philosophically, the approach owes much to the earlier work
of Freudenthal (1956) and Borgman (1963). An upperbound on the total prob-
ability is taken to be the sum of the individual failure mode probabilities,
implicitly recognizing the possible correlation among uncertainties in the
FS's for different modes. However, no method is developed for other estimates.
A schematic of the general design philosophy is shown in Figure 2.9.
Marshall's work seems to have led directly to later work by Bea {(e.g.,
1973, 1975) and probably influenced the work of Stahl. Bea's main concern’
in his published work has been the selection of environmental criteria for
platform design, that is, design waves, storms, earthquakes, winds, etc.

Like Marshall, Bea has considered lumped parameter analyses and specified

probability distributions over ratios of actual to predicted strengfh of
structural or foundation elements,‘and actual to prédicted 105&5 from waves
or earthquakes (Figure 2.6). Optimizationis by minimizing expécted coét cénsider—
ing only total failure on the risk side (Figure 2.7).

Stahl has concentrated on the structural reliahility of steel plat-
forms in an approach very much like Freudenthal's. This work has beén
reported in a series of papers (1974, 1976, 1977). Probability distributions
are specified on load parameters and on resistances and the probabilities 6f
loads exceeding resistances calculated. These analyses primarily deal with
individual structural elements under simple loadings, and little attention!
is directed.to foundation response. Stahl has strongly supported a risk

analysis approach to design decision and has proposed that a balancing of
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design and fabrication cost against expected losses due to failure bhe used
in design. These ideas are strongly reflected in the ASCE committee report

(1979) .

More recent work in offshore reliability has been undertaken by Moses
(1979 a, b), under support of Amoco. This work is a departure from that of
Marshall, Bea, and the early work of Stahl. However, Stahl has had direct
influence on this work.

Moses' approach is Bayesian, and consists of two parts. The first is
an analysis of the structural system making up a platform. This is a second-
moment analysis based on the means and variances of element resistances.

The second is an empirical calibration of the reliability predictioné against
observed survivals and failures. This is based on Bayesian inference, and up-
dates estimates of load and resistance correction factors. This work is
mostly theoretical, and in principle is not limited in application to off-

shore structures.

Others who have contributed to the structural reliability analysis of
offshore structures includg Fliﬁt and Baker (1976), who take_a‘somewhat broader
view of risk analysis, and.who apply so-called level II methods of reliability
theory (Flint, et. al., 1976), Fjeld (1978), and Moan (1979).

At the same time Bea and Stahl were presenting application of reliabil-
ity methods to primarily structural aspects of offshore platforms, Kraft
was working on reliability aspects of platform foundations, His work was
presented in a series of papers (e.g., Kraft and Murph, 1975; Focht and
Kraft, 1977), which while similar in spirit to the earlier structural
work, is different in application. Xraft's work derives from a background
in geotechnical reliability (e.g., 1968), and is not simply a transfer of

technology in structural reliability.
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Kraft considers specific modes of failure and attempts to develop
second-moment information on the distribution of safety factors for each.
Uncertainties in the analyses are primarily attributable to uncertainties in
so0il properties, geotechnical models, and imposed loads. On the resiétance
side these uncertainties are handled by a series of mutually indePEndént
random correction factors (Table 2.1). This procedure is similar to lhat
suggested by Yuceman (1974) for reliability analysis of slopes.

The probability of failure is computed assuming FS to be log Normally
distributed, and the contention maintained that for probabilities of failure
i.lO_4 the sengitivity to distribution shape is

in the range 10'25 pf

slight.

More recently, HSeg and Tang (1978) have published a statistical
analysis of site characterization data for North Sea structures, and a
reliability model for skirt penetration. This work is divorced from the
earlier structural reliability work, and like Kraft's work is entirely
devoted tﬁ gectechnical problems. The analysis considers uncertainty in
bottom parameters, although does not formally evaluate them statistically,
and uses second-moment reliability analyses. TFor stability analysis the
uncertainty in nominal factor of safety is computed using random correction
factors (Table 2.2), but deformation uncertainties are not considered. The
authors do note, however, that Bayesian inference can be applied to cali-

brating the reliability model for survivals (and implicitly failures).
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Table 2.1: From Eraft and Murff (1975)

Random Correction Factors for Predicting Factors of
Safety for Geotechnical Performance

Expected Value c.0.V.

Disturbance deuto stress
release in sampling 1,05 0.03
Technical disturbarnce 1.50 0.11
Soil anisotropy--bearing 0.90 0.03
~-gliding 0.80 0.14
Shearing rate 1.10 : 0.02
Cyclic loads 0.70 0.10
Strain softening 0.95 0.02
In-situ stress 1.05 0.01
Fissures 1.00 0.00
Bearing 1.55 0.12

S8liding 0.97 0.21
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Table 2.2: from Hoeg and Tang
(1978)

. Random Correction Factors for Stability Analysis

Factor Mean cov
Model uncertainty 1.0 0.03
Cyclic loading 1.05 0.03
Conductor effect : i.Ol 0.01
Erosion effect 0.98 . 0.01
Depth of embedment 1.0 E 0.025
Load factor . ' - 0.23
Undrained strength* - 0.22
*Undrained Shear Strength CPET only CPT & Lab
Spatial variability 0.03 0.03
Insufficient samples 0.03 0.04
Calibration of CPT to laboratory 0.20 -
Laboratory compared to field 0.21 a.21

TOTAL 0.29 0.22
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2.4 Present State of Offshore Geotechnical Reliability Analysis

From this brief review of previous work on risk and reliability analyses
of offshore structures it seems clear that the development and application
of such techniques is in its infancy. To date, most of the very difficult
problems of infering bottom conditions and assessing the uncertainties of
geotechnical predictions have not been addressed. This reflects primarily
the state of general geotechnical reliability analysis and not merely its
application to offshore structures. If anything, the offshore industry is
a spearhead of this work. The primary limitations of previous work have
been neglect of spatial variation in bottom conditions, simplistic analysis
of modeling uncertainty, and lack of attention to system behavior of offshore
foundations. It would be overly ambitiocus to suggest that these difficulties
can be quickly overcome, but significant contributions to the problem of

quantifyihg offshore risks are within grasp.
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3. ENVIRONMENTAL LOADS

Reliability analysts must always concern themselves not only with
uncertainties in resistance and response but also with imposed loads.

For offshore structures the most important uncertainties in loads are those
due to loads imposed by the environment, namely: wind, hurricanes, and
tornadoes; waves, currents, and tides; earthquakes, and tsunamis; accidental
loads; and in special cases, ice. No attempts were made in the current
research to further the state-of-the-art of guantifying uncertainties %n
environmental loads, or of predicting their expected values. However, to
assess the relative importance of geotechnical uncertainties to overall re-
liability an appreciation was needed of how large other contributeors to
overall uncertainty are,

This section summarizes current levels of uncertainty in predictions
of environmental loads, concentrating attention on the most important of
these--wave loading. The discussion is based on methods of analysis used
in practice rather than emerging techniques in the literature, because
first, these are the ways loads are forecast, and second, the empirical
accuracy and precision of emerging techniques has yet to be verified.

Uncertainties in forecasting loads on an offshore structure may be
grouped in three classes. First, there are those uncertainties arising
out of the stochastic models used to characterize wave heights, wind speeds,
earthquake ground motion, or other physical processes. From such models
one arrives at an expression of annual or design life exceedance probabili-
ties, autocorrelations of magnitudes in time or space (e.qg., wave height)
and cross correlations {e.g., of wave height and period). Within the

chosen modeling these uncertainties are taken to be "natural,” and can
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normally be c;lculated once a set of model parameters have been specified.

Second, there are uncertainties arising out of the statistical esti-
mation of the paramefers of the stochastic models. These statistical
uncertainties reflect the finite historical record of observations of the
physical processes and associated sampling variation. They may also re-
flect the uncertainty inherent in extrapolating observations made in one
geographical location to predictions at'another. These latter uncer-
tainties, however, are not necessarily within the realm of traditional
statistical procedures.

Third, there are uncertainties in translating physical occurrences
to imposed loads. These uncertainties are usually said to involve the
transfer function, €.g., in calculating wave loads from wave heights and
periods. These uncertainties have to do with the models developed for re-
lating environmental phenomena to load effects, and with the accuracy and
precision with which the parameters of such models are known for a specific
candidate design.

These three sources of uncertainty combine to yield the overall
uncertainty in load predictions. As discussed in more detail below, in the
present work this synthesis was made using two methods: Bayesian predictive
distributions and propagation of variance techniques (e.g., first-order
second-moment analysis, FOSM). The Bayesian technique uses the whole prob-

ability relation to calculate the predictive distribution on load parameters

as

£(s) = ff £ls | x)£(x|6)£(8)dAxdb (3.1)
gx
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where f£(98) denotes the pdf, s the load parameter, X the natural phenolensn,
and § the parameters of the stochastic model of x. The FOSM technique uses
the second-moment relations of means and variances based on Taylor series

expansions of the relations among variables,

3.1 Stochastic Occurrence Modeling

In modeling sea gstates and subsequently the occurrencé of wave
loadings it is convenient to distinguish between long and short term
descriptions. Long term descriptions are those summarizing storm occur-
rences and parameters, typically as disecrete or point processes in time;
while short term descriptions are those based on stationarity assumptions
conditioned on the sea-state parameters of the long term descriptions.
For the purposes of geotechnical modeling long term descriptions are
typically the basis for predicting design life ioad_exceedance probabilities,
whereas short term descriptions are typiéally the basis for predicting
dynamic response (e.g., development of excess pore pressures, cyclic

strain softening).

3.1.1 Long Term Description

The data base upon which long term descriptions of the sea state
rest comprise three types of information: 1) visual observations, 2)
instrumental cbservations, and 3) hindcasts. Visual observations normally
exist over a longer time period than do instrumental observations, but
the bias and random errors of these observations (i.e., measurement cali-
bration) are not known. Instrumental observations usually exist for only
short time histories, and therefore their statistical uncertainty can be

large. Hindcasts, made by combining historical storm wind speeds with a
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theory of wind generated waves, provides a long historical record (of
storm waves), but carries large calibration errors (Marshall and Bea (1976)
estimate a bhias of b.S and a c.o.v. of 30%).

It has been common to summarize long term variation of the sca state
in the single parameter, characteristic wave height Hc. This might be a
visually estimated height or some statistical measure like significant |
wave height Hs‘ More recent work, however, tends toward a description
usiﬁg a characteristic wave height, average mean period T and principle

wave direction 6. Within this model the parameters (Hc,i,ﬁ} exist for

every instant in time, and the instantaneocus pdf is
£(8 ,T, &) = £(a_|8)£(T|H_,0)E(B) . | (3.2)
c c c

The pdf f(HCIE) has been suggested to be best modelled by Weibull,
Normal, or Gumbel Type I distribution, and in studies within which HC and
T are assumed independent the marginal distribution on T is often also
taken to be Weibull, Normal,or Gumbel Type I. Little work appears to have
 been done on dependence of H_ and T in long term descriptions.

For design, particularly of the foundation, the probability of en-
countering extreme sea states in specified periods of time (e.g., design
life) is of interest. By design these probabilities are necessarily small,
and predictions must be extrapolated sometimes far from the existing data
base.

Given that tﬁe exceedance probabilities are small, the distribution
of number of exceedances of some extreme sea state H is commonly taken to

be Poisson distributed with mean A(H) per unit time t,
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pn|a(m),t) = L exp (-A(H) ) (A (D) £) " . {3.3)
n}
AH must be estiméted from historical data and given the rarity of occurrence
can contain significant statistical error.

To overcome this error some assumption or referénce period must be
taken by which to extrapolate observations of smaller Hc up to the higher
values of H. The most common of these {e.g., Thom, 197}1) is to assume
some distributional form for the maximum Hc per year, and then to use extreme
value theory to extrapolate. Thom uses a Gumbel type I (i.e., double expo-
nental) type distribution for the distribution of annual peak Hc. From this
a distribution of exceedance probabilities of given H in specified time
periods is calculated. For the purposes of calculating reliability under
a load, this distribution of exceedance probabilities suffices, unless
cumulative effects of multiple storms are considered important.

The statistical uncertainty in estimates of exceedance probabilities
based on the largest annual wave approach can be calculated directly from
the sampling properties of, e.g., the double exponential distribution.

As discussed by Kimball (in Gumbel, 1958) the likelihood fﬁnction for
double exponential sampling cannot be factored into a kernal and therefore
an analytical maximum likelihood estimator and a natural conjugate for
Bayesian updating are not available. Nevertheless, from a frequentist view
iterative and approximate sampling variances and distributions are available,
and from a Bayesian view direct enumeration is always possible.

A conveﬁient result due to Kimball is an approximate solution for the
sampling wvariation of Hp' the wave height with {1-p) exceedance probability

for the maximum likelihood estimate of the distribution parameters. Let
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the double expconential pdf of maximum wave height H be

£(H) =ae HWgTexpl-alHul) , (3.4)

with maximum likelihoed estimators of o,u found iteratively from the

expressions
"~ -A H
ez e i=n (3.5)
e
= + = ==1 H; ' {3.6)
e-aHi o N

with N, the sample size; and (l/N)ZHi, the mean annual observed maximum

wave height. Then the sampling distribution of Hp is asymptotically Normal

with variance

2, 2
o2 o DU-vy) 7/ (n76) ] (3.7)

Hp Na2

where v = a(H-u) and v is Euler's Constant (0.5772156...).

3.1.2 Short Term Description

Short term descriptions of . states normally assume the water sur-
face elevation to be a realization from a stationary (in time), homogeneous
(in space) Gaussian random field, the defining parameter51ofwhich depend
on the long-term aescription. Specification of the field requires joint
pdf's of theelevations at arbitrary numbers of locations {in time and space},
which for the stationary, homogeneous Gaussian case are sufficiently sum-

marized in the mean (assumed zerxro) and auntocovariance function. Usually,
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the autocovariance function is replaced by the uniquely related

spectral density function, since the latter has more convenient mathematical
properties and ties directly into dynamic response analysis.

Wave Heights

Considering the water surface to be a Gaussian random field leads
immediately to solutions for the probability distribution o6f wave heighf,
exceedance probabilities as functions of time, and other important pre-
dictions for assessing potential loads on an offshore structure. These
results are well known and have been in the literature for 30 years {(e.g.,
Rice, 1944; Longuet-Higgins, 1957; Cartwright and Lonquet-Higgins, 1956).

For a stationary Gaussian one-dimensional process H(t) and an arbi-
trary level h the probability of one upcrossing in time iqterﬁal §t has

been shown by Rice (1944} to be
} 2
Pr{n=1{st} = (m,/m )%exp{-h"/2m )6t + ol(st)} (3.8)

where m is the kth moment of the spectral density function of the process
f{w) defined over frequency
k L]

= S WE () du, (3.9)
[+]

and o(dt) is a term of order Gt—l. Thus the.expected number of

upcrossings per unit time A(h) becomes

. % 2 -
A(h) = (mz/mo) exp { -h /2mo} | (3.10)
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and for upcrossing of the mean
Ao} = (m/m )% . (3.11)
2" o )
The mean time between successive upcrossing E(T) is the reciprocal of A(o),
ElT] = (m/m)7F . (3.12)
2 o

These upcrossing probabilities allow calculation of the distribution
of extreme wave heights, by setting the cdf of hmax equal to the probability
of not crossing an arbitrary level in time t. The expected number of uap-
crossings of h in time t is siﬁply A(h)t, and asymtotically for large h the

number n approaches a Poisson distribution {(Cramer and Leadbetter, 1967),

=X fh) t
e

[ 14

Flh_ [t

, _
~h/2mg, ' (3.13)

24

exp{-Alo}te

given that h/Vﬁg is large. This result does not rest on a narrow—bénd
assumption. The distribution of all maxima (Figqure 3.1}, and not simply

the largest maxima is Rayleigh distributed,
2
F(h) = 1 - exp{- h*/2my}

a result which has been derived in several ways (e.g., Cartwright, 1938;

Cartwright and Longuet-Higgins, 1956; Bonneau, 1971; ochi, 1973).
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For narrow band processes the wave height, L, or maximum range of h(t})

between zero-upcrossings, is approximatelyliazhmax, thus H is also Rayleigh
digtributed (Fiqure 3.1}. For wide band processes this need not follow.

In such processes the correlation between consecutive hmax and hmin may be
small and though they are assumed to be marginally Rayleigh . distributed,
their difference may not be. Corrections to the Rayleigh distribution for
H have been given by Haring, et al. (1976), who report about 10% empirical
reduction in HO : 1 - F(Ho) = 10-3 compared with the Rayleigh cdf.

Jahns and Wheeler (1972) conclude on the basis of hindcasting and
empirical data that the Rayleigh distribution of h signficantly under-
estimates the actual probability of occurrence of large maxima; however,
that the poor correlation between peak and following tréugh in broad band
processes decreases the exceedance probabilities of H. Similar evidence
has been presented by Nolte and Hsu (1972}, Thompson (1979), Haring, et al.
(1976), and Forristall (1978), amcng others. Recently, Nolta and Hsu (1979)
have presented a statistical filtering procedure for minimizing the influence
of these biases on prediction.

The reascn for thése biases is that real sea states are not sufficiently
narrow band (<0.3/E[T]) for the Rayleigh distribution to be a good approxi-
mation. Also h(t) seems to diverge from the Gaussian assumption fo; large
positive and negative dewiations (Figure 3.2)., 1In general, a 10% over-
prediction of H for given exceedance probabilities seems to be somewhat
agreed upon.

Because the load effect on an offshore structure depends on both wave
height and period, the joint distribution of H, T is of importance. In
general, less work has been done on this joint dependency than on H alone,
but certain models are available. The surmary here follows Battjes (1978)

and is brief,
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Bretschneider (1959) proposed for developed sea states that H and T
be taken independent and each marginally distributed as Rayleigh variables.

Specifically, for the normalized variables { = %H/ m, and T = T/E{T],

12
- 4 3 4 4
£(g,1) = [&e £ ] « [4r (1.2) 1T exp{-T (1.2}1 } . (3.14)
Recent empirical work, however, {e.g., Earle, et al. 1974) fails to confirm.
this distribution using hurricane Camille data. Battjes, et al. (1972)
have suggested a bivariate Rayleigh pdf including a covariance term.

Wooding (1955} and Longuet-Higgins (1957) derived a theoretical joint

distribution for narrow band Gaussian processes based on Rice's (1944}

results for the envelope of a random process. Renormalizing the period to

_ (mlfmb)T -1

z = (3.15)
2 %
(momz/ml -1)
the distribution becomes
£(£,0) = lfexp {-3€°31 I expl{- 36727} (3.16)

V2n

That is, £(£) = Rayleigh and £(z/E} = N(o,E-ll. contours of this joint
pdf are shown in Figure 3.3.

Cavanié, et al. {1976) have also derived a theoretical joint distri-
bution for narrow band Gaussian processes by considering the joint distri-
bution of h(tj and ﬁ(t}. The resulting density is (Figure 3.3)

263215 o 2 -4
P 2 4

fzns(l-az)u4 2e

2
{usz_uz)z + a a4] {3.17)

£(E, 1)
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where

2
€ =1= m2 /mom4

1 2
= = 1+{1-
v} 5 1+(1 )

/___....__._._
a= /kz/(l-ez)

w = ElT1/E(T_"] (3.18)
where E[Tm+] is the mean time between positive maxima, (l/a)(mz/m4)%. For
large £, the marginal pdf f{£) is asymptotically Rayleigh.

For all cases the marginal distributions of wave height are about
the same. The marginal distributions on period, however, differ somewhat.
As can be seen in Figure 3.3, the distributions of Weoding and Longuet-
Higgins and the distribution of Cavanié, et al. bhecome similar for large £.

considerably more empirical work is needed on this problem, however.

3.1.3 Combined Exceedance Probabilities

To estimate wave exceedance probabilities for the design life of a
structure the long term description of the temporal variation of character-
istic parameters (Hc,§, 5), and the short term description of a stationary,
homogenecus sea state having those parameters must be combined,

Considering maximum wave height H, the conditional ¢df of H given

(Hc;ﬁ, 8) is from Egquation (3.13),
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FaaE) = 1 - expl -2 ) (3.19)

He

where Hc is conventionally defined either as H1/3. the mean of the largest
1/3 of the wave height, or 4m0%. For narrow band Gaussian processes these
are identical. If f(HC) is the distribution of Hc over time, then the

marginal cdf on H becomes simply

2H2
F(H) = J [l-exp{ -=— }]f(Hc)dHc ’ (3.20)

with direct generalization to larger numbers of sea state parameters. This

expresses the probability that any one peak is of less than height'H.
Commonly, however, only sea states for which Hc > Ho are considered!

{i.e., storms), and the occurrence of such states are considered a Poisson

process with parameters A. Then the distribution of H for Hc > H becomes

2H2

f(1) = 1~ -
(H) f [l~exp Ho

! } 1 £ | 2H )aH (3.21)

o

From Equation 3.10 the expected number of exceedences of H within a

storm of duration D and characteristic wave height Hc
2,2
A{(H/D) = (mz/mo) exp{ - 2H /Hc}D (3.22}

and the cdf of the largest wave height is

P ) = e ME/D) (3.23)
max
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Thus, for n storms of differing Hc the cdf of largest wave height becomes

= * - n
F(H__|n) = [ exp -2/} £(H_|H2H )aH_ (3.24)

H
o

A difficulty arises in application because the storm duration is
itself a random variable, and to date the models for the pdf of duraticn
are poorly verified by empirical data. Most analyses begin by noting the
average duration above some level Ho' as being (l-F(Ho)) times the total
time period divided by the expected number of storms with H, > H then
make a distribution assumption for D and estimate the parameters from
historical data. For example, Vik and Houmb (1978) use a Weibull pdf,
Nolte and Hsu (1979) use an exponential pdf, and occasionally a Normal pdf
is suggested. Theoretical solutions for diesussions of a random process
above an arbitrary level are difficult to formulate.

Once a distribution for storm durations is obtained it is incorporated
in Egquation 3.24 by integrating the conditicnal pdf of Hmax over the pdf
of D. Because this is itself difficult, and because f£(D)} is not well
grounded, one of two approximafions is uswally introduced. The first is
to approximate the average duration as above, and then estimate the average

number of waves per storm k as
E{k] = E[D]/E[T] s (3.25)
implying a loose form of narrow band assumption. Then from Equation 3.24

an extreme value distribution on the largest wave per storm can be calculated

and similarly on the largest in n storms. fThe second approximation (e.g.,
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Thom 1971; Schuéller and choi, 1977) is not to consider sea stateat all, or

to implicitly assume that Pr[n>1|t = lyear} - 0, and simply take the

largest wave per.year as the basic random variable. The common assumption

is that this largest yearly wave is Weibull or Double Exponential Distributed,
and from extreme value theory the exceedance probabilities for largest

annual wave an calculated for various design lives.

3.2 Transfer Functions

For a given wave height, peribd, and other environmental conditions
some model must be introduced to predict resulting loads on the structure.
Such a model is here called the loading transfer function. As with any
modeling this transfer introduces uncertainties (Section 5.1).

Current predictions of wave forces on offshore structures are commonly
b&sed on Morison's equation ({1950}, in which the horizontal force on a ver-
tical cylinder extending from the sea bottom and piercing the surface is
divided into two parts: (1) An inertial force taken linearly proportional
to fluid particle acceleration, and (2} a drag force taken proportional to

the sguare of fluid particle velocity and in its direction,

Mva%E (3.26)

5
N#;ﬂ
Bl

oPDuful+

in which dF is the differential force along the c¢ylinder, CD a drag co-
efficient, Cm an inertia coefficient, p the fluid density, u £luid par-

ticle velocity, and a fluid particle acceleration (Figure 3.4). This

force acts in the direction of the wave motion and varies along the depth

of the cylinder due to changes in u and a. The total horizontal farce



- 5] -

ngure 3.4

L Lt o  aLedd

0.0
. S
Cp C e e, .
ool— 1t 4 vannn 11 1 FERET
105 100 107

REYNOLDS NUMBER



- 52 -

on the cylinder is the integral of 4F acting at some ievel 7 depending on
the distribution with depth. |

The derivétion of Morison's equation is based on a large number of
simplifying assumptions. Amﬁng these are that only a single éile is
considered, and that the pile diameter, D, is small compared with the wave
length, L. Thus, the kinematics of wave flow are considered unchanging
over the cross section. Flow is assumed rectalinear, even though particle
motion is actually orbital, and the cyliner is assumed to be at right |
angles to the directions of u and a. The gffect of wave history is ignored,
as are lateral (i.e., lift) forces on the cylinder. Obviocusly, the bhasic
linear decomposition of drag forces due to fluid viscosity and decrease in
pressure behind the cyliner, and inertial forces due to accelefation of the
displaced volume is also assumed valid. |

The intent in noting these well known assumptions is only to suggest
the underlying reasons for model uncertainty in predicting 1oa§ing transfer.

To use Morison's eguation an estimate of particle velociﬁy and accel-
eration must be made as a function of depth. These predictions are usually
made on the basis of one forﬁ or another of wave theory, rather than from
empirical analyses. These are usually linear. This also introduces uncer-
tainty, as the theoretical u and a may differ from those realized.
Composition of uncertainties in drag and inertia coefficients made using
wave theory and simultaneous observation of u, a seem to confirm this con-
tention (e. g., Kim and Hibbard, 1975). However, it should be hoted that
the variation between linear and non-linear wave theory in predictlng forces
is small, except for high h/D (e.g. > 0.8) {Raman and Veukatanar-Asaiah,

1976} ; Chakrabarti, 1975). The variance between observed and predicted is

larger.
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To include 1lift forces the Morison equation is usually addended with

the term
F_ = lC Du (3.27)
2L° ' -

acting horizontally perpendicular to the direction of u. CL is the 1lift
coefficient and summarizes the effects of eddies forming around the cylinder
and separating from it, Experimental work indicates that for Keulegen-
Carpender numbers, uT/L, less than about 5, ' these 1lift forces are negli-
gible {Chakrabarti, EE_E£.19?6). T is the wave period. However, for
uTl/D of the order of 15 the total forces including the 1lift component can

be as large as 60% higher than that predicted from Morison's eguation,

and acts in a directioﬁ oblique ﬁo u.

The effect of multiple cylinder groups on individual cylinder forces
has been studied by Chakrabarti (1978), Spring and Monkmeyer'(1975), and
Twersky (1952). These studies have all been theoretical and have not been
extensively verified experimentally. The conclusions of these studies is
that for center to center cylinder spacings of greater than about 2.5 or 3
diameters,and for either cylinders in a single row, three in equilateral
triangle, or four in a square, the difference between single cylinder
forces when alone and in a group are small. For closer spacings the increase
in single cylinder force can become large.

Present practice treats Morison's equation as a semi-empirical model
(i.e., black box), by estimating CD' DM' and CL empirically and al;owing
uncertainty in the coefficients to include the uncertainty of the model

itself. Thus, unsurprisingly, the uncertainty in these ccefficients is
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large. Furthermore, the estimates of the coefficients depend on the
procedure used to make them. Morison, et al.'s approach was to set the
measured force equalrto either the drag or inertial force when the other
was theoretically zero. Keulegan and Carpenter (1958) decomposed the
measured force into Fourier camponents and used the amplitudes of these to
estimate the coefficienté. Current practice is to fit Morison's equation
to measured forces through some least squares criterion. These various
methods yieéld different estimates of CD' CM unless the measured forces
are given identically by the postulated model, which of course they are
not. For example, Sarphaya {1975) has studied one dimensional oscilating
flow over a cylinder and found a 4% consistent difference in coefficient
estimates made by Fourier decomposition and least squareé. The guestion
of coefficient estimates is therefore a statistical one, and some error
about the best estimates will exisf even for infinite data series,
Estimates of CD and CM vary éonsiderably from wave to wave, as shown

in Figure 3.5, and are a function of two dimensionless numbers, the Reynolds

R.e and Keulegan-Carpenter KC numbers.

R = ub/v

H

KC uT/D (3.28}
where v is the kinematic viscosity of the fluid, and KC is sometimes called
the period number. When averaged over a number of waves this scatter is
naturally reduced (Figure 3.6), although a large residual error remains.
Current practice is to take CD to lie between about 0.7 and 1.0, and CM

between 1.5 and 2.0. The associated coefficients of variation are of the
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order of 35% for CD and 40% for CM (Schugller, 1976) .

The effect of uncertainties introduced by using (linear) wave theory
to predict u and a, as compared with direct observations, is seen in Kim
and Hubbard's results (1975). By measuring u and a simultanecusly with
force the observed coefficients of variation in CD and CM were reduced to
24% and 22% respectfully. However, because wave thoery is used in prac-
tice for predicting forces these reductions in uncertainty do not apply.

As discussed by Ramberg and Niedzwecki (1979), the assumption of
uniform force coefficients over the depth of the c¢ylinder also introduces
error. The conclusion of this work igs that the assumptions of uniform CD
leads to over prediction of force, attributable to variations in the degree
to which fluid particle mo;ements approach the one~dimensional assumption.

Again, the observed coefficients ¢f variation for CD, CM determined from

empirical analyses include such uncertainty.

3.3 Combined Wave Loading Uncertainties

In assessing the combined uncertainty in environmental loads on =n
of fshore structure each of the contributions of stochastic, statistical, and
loading transfer function must be included. In this sectibn the combined
uncertainty in wave loading for the Georges Bank site is
considered.

From Section 3.1 the annual hazard exposure to wave heights is
shown in Figure 3.7. This figure shows the cumulative distribution of wave
height-based on bést estimate stochastic parameters, and the predigtive dig~-
tribution incorporating statistical uncertainty.

From Section 3.2 the load transfer function and its associated uncer-

tainty are shown in Figure 3.8 for the design platform. Wave
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heights breaki_ng over the platform deck are not considered@ in this analysis
(CE£., Committee on Offshore Reliability, ASCE, 1979).

Combining Figufes 3.7 and 3.8 technigues leads to the annual CDF of
wave loading shown in Figure 3.9.- This figure also shows CDF's for 25
and 50 year design lives., These distributions include both stochastic and

statistical uncertainty.
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4. SOII, EXPLORATION

Uncertainties in bottom conditions and parameter estimates are ﬁaused
by the spatial variation of bottom sediments,by limited numbers of meésure—
ments, by bias error in measuring sediment properties, by undetected geo—
logical details, and by poorly defined strata geometry.
Certainly, any problem of measuring sediment properties and inferring subsurface
conditions that is difficult onshore is even more difficult offshore. The
cost of site investigation is high, the technical difficulty of making

accurate measurements great, and the number of direct observations limited.

4.1 Site Investigation Program

A typical site investigation program offshore begins with the collec-
tion of geophysical information (i.e., remote sensing) over a large region.
Because there is often latitude in the exact siting of an offshore facility,
this preliminary reconnaissance serves as a screening and site selection
stage in which favorable conditions are more precisely located, Upon deciding
on one or more favorable locations, further geophysical information is

collected on a more intense pattern.

4.1.1 Accoustical Data

The most common offshore geophysical measurements for geotechnical
purposes are accoustical, that is, high frequency seismic reflection surveys.
Accoustical sources based on high power spark gaps {"sparkeré") generxate
frequencies in the range 200 Hz to 1000 Hz, and penetrate to 300 or 400 m
below the mudline, depending on.sediment properties. Because of the com-
paritively low frequency of sparkers, however, the resolution of the
returned signal is seldom better than about 5m, meaning that details of the

subbottom geometry are not defined and that the critical sediment zones
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immediately below the seabed are dAifficult teo evaluate. More resolution
can be obtained using higher frequency "boomers" or multi-electrode sparkers,
but these have gorresp0ndingly less penetration (i.e., greater attenuation).

A difficulty with accoustical data is how to interpret it. Returrned
reflected signals show pleasingly precise delineations of "reflectors"™ in the
subbottom (Figure 4.1), but what precisely the reflectors represent, where
exactly they are, and what details fail to appear in the traces are difficult
questions to answer.

2ll acoustical data is expressed as time delays between transmission
and reflection. To change time delay into gecmetric information requires
that physical properties of the sediments {e.g., seismic véiocity, density}
be known or assumed. Since these proptrties are known only iﬁprecisely
without direct physical measurements, the geometry of stratification, lenses
and other details is only imprecisely inferrable from the acoustic profileé.
Therefore, acoustic profiles must always be calibrated by-direct observations
of the subbottom sediments (i.e., borings), and they are théréfore used %t
particular sites more to interpolate among borings than to define the sub-

_bottom itself. Even then, however, the spatial variation of sediment |
properties adds uncertainty to geometric interpretations of the acoustical
data. |

| Some work has been done in attempting to correlate acoustical properties

of sediments to physical, particularly engineering, properties. This work

has met with little success, The only apparent correlation of signficance

is sonic velocity with sediment density (Figure 4.2), but even though den-
sity is an important index properties for sediments (e.g., Figure 4.3) the
level of correlation is insufficient to be of much use. Attempts to predict
properties like pndrained shear strength or compressibility have produced

few results.
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The detection of anomalies in subbottom profiles is potentially the
most important use of acoustical data. However, few carefully-contrdlled
experimental programs have been carried out. Proponents of geophysical
techniques 6ften point out the past successes of geophysical surveys in
locating anomalies on or beneath the sea bottom. However, for inferrential
purposes one must not only know the conditional probability that an anomaly
in the data is an anomaly in situ, but also that an anomaly in situ produces
an anomaly in the data. Since most field research on geophysics is based
on an analysis of successes but not failures —- which in fairness is due to
the fact that one doesn't know that an existing énomaly is undetected --
only the first of these two conditional probabilities is known. This
means inferences of the probability of undetected details are not possible

from the geophysical data.

4.1.2 Direct Measurements

The next and most important stage in site investigation is to gather
direct information on the bottom sediments. This is done in three ways,
using penetration probes, specimen sampling, and in situ testing,

The most rudimentary information is obtained by taking grab or similar
samples of the bottom sediments near the mudline. These specimens are easy
to obtain and cheap, but are highly or totally disturbed, and only provide
information on wery shallow strata. They allow classification of surface
sediments, but contributelittle other information of geotechnical signifi-
cance .

Other procedures for near surface sampling allow less disturped samples
to be taken, but again are limited in their depth of penetration. The most

common of these are gravity samples, which use the inertia of the falling
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sampler to drive the sampling tube into the bottom sediment (Figure 4 .4).
There are several forms of gravity sampling devices, but they are all
limited to depths of one to two meters and all take rapidly intruded speci-
mens (i.e., "dynamic"). Therefore, the specimens so cbtained are more
disturbed than those taken by\intrusion. Similarly, vibtracores taken

by vibratory penetration of a sampling tube have limited depth penefrétion
and introduce severe sample disturbance,

Deeper and less disturbed specimens are taken by borings, made either
from the water surface or from specially designed submersible drilling
stages (Figure 4.5). For borings off fixed structure or in calm seas,
common s0il samplers {e.g., split spoons or thin walled tube samplers) are
typically.used. These have the same drawbacks and advantages as when used
onshore, For drilling off floating structures or boats, wire line samples
are usually used. There are various sorts of these, but generally follow the
principle illustrated in Figure 4.6. Wire line sampling from drilling boats
can be made to depths of over 200 m (McClelland, 1942).

As with any geotechnical sampling, the specimens recovered are to some
extent disturbed (Figure 4.7}. Measurements of physical parameters are made
by testing specimens in the laboratory, and are again subject to test%ng
errors both random and biased. Aan extensive discussion of these is gi&en
by Ladd (1977). 1Index properties are usually measured, for example Atterberg
limits, and used to predict in situ prOperfies through well known correlations.
As onshore, sands are exceedingly difficult to sample undisturbed.
Therefore, laboratory tests are made on reconstituted specimens and the results
expressed parametrically with relative density. The well-known error in
measurements of relative density fe.g., Tavernas, 1976} introduce considerable

uncertainty to predictions of in situ properties made this way.
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Increasing use is being made of penetration probes in offshore work,
particularly core penetration (CPT). The advantages of such tests are
that they are easie: and faster than taking specimens, less expensive, and
directly measure properties in situ. The disadvantage hag traditionally been
that the correlations between penetration resistance and geotechnical proper-
ties are poor (i.e., these must scatter in the data), and primarily. |
empirical. Recent work on penetration testing, however, seems to be leading
to theoretical relations among core resistance and engineering properties,
and reducing scatter in the empirical relations (e.g., Vivitrat, et. al. 1979)}.

The CPT very simply measures the resistance of the sediments to bene-
tration by a cone shaped probe of specified geometry (Figure 4.8). The
resistance of the cone itself is always measured, and it is increasingly
common to measure the drag resistance on the sleeve of the rod to which the
cone is attached. From these measurements certain engineering properties
can be inferred. Most directly, the CPT is used to infer undrained strength
(friction angle or relative density in sands), but inferrence of deformation
prope;ties is also sometimes attempted. Recent ﬁork on piezometer measure-
ments at the cone tip have indicated that it may also be possible to measuré
consolidation properties in clay from CPT results. -

Finally, a number of other in situ tests of general use onsho;e are
sometimes used offshore. Of these, the field vane is common. However,
pressure meter tests and even plate load tests have been used on occasion,
if not routinely (e.g., Hleg and Tang, 1978). Typically, the same magﬁitudes

of correction factors and the same correlations are used for these tests

onshore and off.
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4.1.3 Exploration Programs

Typical exploration programs for a large gravity platform are illustrated
by those presented by Hitching& Et.al;p(l976)ﬂmiﬂdeg and Tang (1978). Course
grid acoustic surveys might be run at 300 to 500 m spacing, followed by a
fine grid at perhaps 50 to 100 m spacing. In the direct sampling and testing
phase on the order of 10 to 15 penetrations and a like ﬁumbei of borings are
made. Most of these are shallow, penetrating perhaps to 25 m; but a few
must be deep, penetrating perhaps to 100 m beneath the mudline. The region
of significant influence of the structure is from one to two diameters of
the base, depending on the mode of performance, so this depth of inveétiga—
tion is manditory.

Boring and probe layouts are shown in Figures 4.9, 4.10, and 4.11.
The patterns are plannedto give full spatial coverage of the site, such that
trends or major inhomgeneities will be identified. However, they must also
be.planned such that crosgs calibrations are possible among specimen tests, in-
situ measurements, and geophysical surveys. 8Since the exact final location
of the completed structure is often ugcertain,'particularly with gravity plat-
forms that are floated to the site and sunk, the pattern is often not
specifically designed with respect to imposed stress distributions as in
onshore site investigation, The investigation program typically requires 3 to
6 months from beginning to end, and in 1979 figures costs from one to two

million dollars.

4.2 Offshore Sediment Profiles
Offshore sediments vary perhaps even more than onshore soils, from

terrigenous detritus derived from continental runoff, +to bicgenic
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caicareuites and calcilutites derived from marine organisms. This section
discusses geotechnical conditions at the Geofges Bank site, used as an example
in later chapters of the report. No attempt is made to more broadly cata-
gorize marine sediments. Such more general discussions are found in ﬁoorany
and Gizienski (1970), Shepard (1948), and Richards (1967). |

The site chosen for test applications is tha£ previously considered by
Laszlo (1976). It lies on the southeast edge of Georges Bank in 100 m (300 ft.)
of water, approximately 40 km Northeast of Lydonia Canyon (Figure 4.12).

The bottom sediments at the mudline are mostly sand with some gravelly sands;
and geologically the site is near to boundary between Triasic marine sediments
and the older Avalon Platform (560 m.g.). Normal faults form the boundary
between these formations, and like the entire Georges Bank, a number of small
normal faults are within a few tens of kilometers.

The Georges Bank itself is a remnant of the coastal plane, isclated from
the surrounded continental shelf by erosicn of the Gulf of Maine, Great South
Channel, and Northeast Channel. Late tertiary erosion modified by glacial
events are primarily responsible for the presenf bank morphology. Estimatgs
of Pleistocene deposition on the Bank vary greatly.*

During the Cretaceous and Tertiary the continental shelf was formed by
up~ and outbuilding on the continental margin. Depcosition was interrupted
at the beginning of the Tertiary by an episode of extensive erosion, resulting
in a non-conformity between Cretacious and Tertiary.

In late Tertiary a lowland formed Northwest of the present bank and
deepened into the Gulf of Maine. Two southward flowing drainage systems
formed east and west of the present bank, and by early Pleistocene much of

the Tertiary material to the west was removed by fluvial and glacial action.

*The geological history is based on Lewis and Sylvester (1975).
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The present canyons on the south of the bank (Hydrographer, Welker,
Oceanographer, Gilbert, and Lydonia} are probably the result of drainage Ouf—
lets during periods of low sea level. |

Farly Pleistocene glaciation deepened the Gulf of Mainé and provided
large amounts of seaiments. Pricor to the final glacial episode a transgression
of the sea planed the Bank forming a non-conformity, which was modified by
subaerial erosion during the last glaciation. Many stream channels incise
the non-conformity in the northeast corner of the Banks, decreasing in number
eastward. These are probably the remains of a late Pleiétocéne drainage
system which flowed eastward. Subaerial exposure appears to have lasted long
enough to produce complex cut and fill relations in materials overlying the
non-conformity.

Very little direct information on geotéchnical properties has been
gathered near the site, or on Georges Bank. Deep geophysics surveys (e.g.,
seismic refraction) have been run, but these give essentially no information
on sediments near the sea bottom. The available sources of geotechniéal
information from which data have been taken aré shown in Table 4.1. No direct
physical property data was taken during the present course of study.

The best direct information comes, first, from bofings and standard
penetration tests (SPT) performed by Moran, Proctor, Mueser, and Rutledge
for the Texas Towers Study. Inm particular, borings were made from drilling
barges on the Nantucket and Georges Shoals, borderiﬁg the Great South Cﬁannel.
second, the best direct information comes from the Atlantic Margin Coriné
Project, perfgrme@ by the USGS. This study resulted in acoastic survey qf
Georges Bank, and in six borings on the Bank. The location of all of these

borings are shown on Figure 4.13, the acoustical survey grid in Figure 4.14.



Year of Data

1959

1973

1973,4

1975

1976

Table 4.1
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Sources of Geotechnical Information
on Georges Bank Site Used in Presgent
Ctudy

Repoxt or Project

Texas Tower Feasibility Study
(Bureau of Yards and Docks, USN)

Atlantic Generating Studies
{Dames and Moore)

Wilkinson Basin Studies
(Richards)

Shallow Sedimentary Study
of Georges Bank
(Lewis and Sylwester - U.5.G.5.}

Atlantic Margin Coring Project
-~ Preliminary Report
(U.5.G6.8.) :
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As a cursory overview, the Georges Bank tracts and the test site in
particular have gray Pleistocene gravelly sands to a depth of 50 to 100 m
below the mudline. Toward the flanks of the Bank these Pleistocene sedi-
ments grade into silty sands and silty gravelly sands. Thé Pleistocene
sediments are terrestial detritus, without any apparent appearance of car-
bonate sands or silts, in keeping with the general nature of the sediments
of the Northern Atlantic States {Hathaway, et. al.,1979). Beneath the
Pleistocene sands lie Miocene clayey silts and silty sands to an unexplored
depth. Borings made on the Bank in connection with the AMCP extend only
slightly more than 100 m below the mudline. Typical profiles from the Texas

Towers project and AMCP are shown in Figures 4.15 and 4.16.

4.3 Uncertainties in Site Characterization.

Given the limited number of cbservations, measurement errors, and other
factors obscuring the characterization of site conditions, attempts are now
being made to quantify ("rationalize") the uncertainties of parameter estima-
tiop, mapping, and general site exploration. The objective of such an
approach, reviewed and extended in the following subsections, is to arrive
at a useable description of uncertainty for assessing reliability and risk.
This is not a straightforward task. The uncertainties of site characteriza-
tion cannot be made entirely objective and many traditional methods of statis-
tical inference require rethinking in application to geclogical exploratiocn.

The following sections provide first an epistemological background for
statistical site characterization, and then an overview of problems and
current approaches to quantification. Later subsections address each of
three principal tasks in site characterization: parameter eStimation, for-

mation mapping, and anomaly detection.
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4.3.1 Inductive Basis of Site Characterization

The application of probabilistic modeling to site characterization has
been seen by many as an opportunity to make objective a process traditionally
seen as subjective. While probabilistic modeling may provide insights into
the problem, and may for well defined questions provide quantitative answers,
at the basis of geological exploration are epistemological guestions which
probability theory cannot answer. While important questions in exploration
and characterization are amenable to probabilistic modeling, not all are.
There are fundamental limitations to the "rational approach" which must be
recognized.

As in any inferential task, the data of site characterization do not
"speak for themselves". They may, in conjunction with some model of how they
arise, lead one to alter what was suspected or believed to some new belief;
but at its underpinings geological_exploration is an inductive undertaking,
and the uncertainties of site charécterization are therefore necessarily
subjective.

The conclusions of site charécterization rest on three stages of
considerations. First, in order for probabilities over hypotheses or param-
eters to be inferred, the hypotheses or parameters must be.thought of. That
is, they must be imagined through some process of inductive reasoning.

Then, the extent to which the hypotheses or parameters are believed must be
considered. That is, initial degrees.of confirmation must be assigned to the
hypotheses or parameters before any data are analysed. . .Finally, the data
themselves are evaluated in light of the hypotheses to modify the initial
degree of confirmation. That is, the degree to which the data are or are not
consistent with the hypotheses or parameters Jleads to either increased or

decreased belief in the latter.
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Cnly the last of these three stages can be considered objective, in
the sense that a set of mathematical relationships can be specified from
which conclusions necessarily follow. The first two stages are purely induc-
tive, and if Hume is to be believed, "non-logical". This means that the
conclusions of site characterization contain much more than the records them-
selves. Hypotheses are the result of exploration, and uncertainties ma%i—
fest in the degree to which these are or are not confirmed by observations.
Therefore, the uncertainty reflects ignorance, it has little to do withi
natural randomness. “

Fiqures 4.17a, b illustrate this subjectivity better than many more
words could. Each shows a map of the same area of Northerm Canada, but
drawn 35 years apart. It would be unlikely that the differences were caused
by actual changes in the distribution of minerals and rocks, but interestingly
they are also not changed by differences in information. The data bases for
the two maps are the same. What did change between 1223 and 1958 was
geological theory, and this change led to a reinterpretation of the physical
observations. This sort of uncertainty, between the map of 4.17a and that of
4.17b, is not a statistical problem but a problem of induction.

The influence of initial degree of confirmation 'is shown in Figure
4.18. Here the probability of an undetected anomaly in a sediment profile
after exploraton has failed to find it is plotted as a function of its
probability prior to exploration and of the efficiency {(extent) of the
exploration program. Efficiency hgre is measured by the conditional prob-
ability that the anomaly would be found if it existed. Only if this efficiency
is high (say, > 80%) does the confirmation of the hypothesis of an anomaly

existing become insensitive to prior, mostly subjective information.
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Figure 4.17 -- Two maps of the same area of Canada

mapping thirty years apart. Map on left dates From
1958, that on right from 1983F. Data base is the
same for both maps. Taken from Harrison, 1963.
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Figure 4.18 —- Relationship between prior probability

of an anomaly existing and the posterior probability
if none is found during exploration, as a function of
the search efficacy (i.e., conditional probability of
finding an existing anomaly).
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In most geotechnical applications this efficacy is more in the range of 20 to
30%.

The implicatioﬁ of Figures 4.17a, b and 4.18 is that only parts of site
exploration and characterization can be statistically modelled. This ddes
not diminish the importance of such modeling, but emphasizes that one must.
distinguish between what can and what cannot be modelled in engineering
analysis. The role of statistical analysis is to logically specify how
observations modify prior probhabilities of hypotheses or parameters to

posterior (after data) probabilities.

4.3.2 Development of Statistical Site Characterization

While hypothesis formulation and initial degrees of confirmation are
subjective, the support offered by field data can be statistically modelléd.

Tt is important ta briefly distinguish among schools of probabilistic
thought.  Probability theory is a mathematical construct predicated on
axioms within which "probability" is a primitive term. Propérties of
probability are specified, but its meaning is not. This has led to a
number of philesophical intérpretations, generally grouped into two schools:
the frequentist school, which holds probability to be the relative fre-
quency of an event within a long series of similar trials; and the degree-
of-belief school, which holdé probability to be the degree to which one
believes in the probable occurrence of an event or the truth of a proposition.

The rise of rationalism and the development of the British school of
statisfics from about 1880 to 1940, and the resurgence of interest in belief
starting about 1926, lead to strongly held opinions on the philosophical

basis of probability. The distinction between frequency and belief as
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complimentary rather than competing philosophies is today not very popular.
Yet, one could argue, that freguency and belief are distinct and that their
commonality throﬁgh mathematical probability theory is the extent of
their connection.

The practical implications of the philosophical distinction betweén

frequency and belief are the following:

® Within frequentist thought probabilities are not defined on the
state-of-nature. A fault exists at a particular site with prob-
ability 0 or 1. Whether or not a certain exploration program
detects the fault is admissable of probabilistic description,
since it can be conceived of as a freguency. But one time everts
or specific realizations cannot. In frequentist theory, one can
only make statements of the following type: "if a fault exists,

this exploration program has a 35% chance of finding it."

® Degree-of-belief philosophy allows probabilities on unique
events. One can in this case say, "the probability of a fault
existing at the site is 60%." A difficulty with belief theory
however, is that the iscue of belief prior to evidence must be
explicitly considered. By disallowing probabilities on “nature”

frequentist theory sidesteps this issue.

Degree-of-belief theory is heavily dependent on one familiar equation,

Bayes' Theorem:

P(H|E) « P(H) P(E|H) . (4.1)
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The probability of an hypothesis, H, conditioned on evidence, E, is pro-
portional to the product of the marginal probability of H, and the condi—
tional prcbability of E. Because the marginal probability of H is usually
that prior to observing E, it is called the "prior" probability. The |
conditional probability of the evidence is called the likelihood of H. The
decomposing equation shows the unification Bayesian methods bring to
inference. The entire evidence of field data enters through the likelihood
function, which is the probabilistic model for how observations occur.
Pre-existing {iﬁ part subjective) information enters through the prior
distribution,

Uncertainty in predictions

Subsurface data are ultimately used to maké predictions about perform-
ance. Therefore, the extent of exploration and the types of data to be
collected, depend on the relationship of subsurface uncertainty to predictive
uncertainty. If better subsurface information would not influence decisions,
there is no sense collecting it.

Predictions are made in three ways,

¢ Extrapolating historical frequency,

& Extending natural law, and

e Quantifying human judgment.
The first two are discussed here.

To extrapclate frequencies or extend laws requires an abstraction of
the real world, a model, into which site specific information generally

enters as parameter values. There are two purposes in modeling: to

understand reality and to predict it. These functions are not always served best
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by the same model. The frequency of ‘'heads' in tosses of a coin is
accurately predicted by simple Bernoullian theory. However, sophisticated
dynamic analysis; yielding less predictive accuracy, probably yields more
insight. In analyzing exploration, models play the same role as in
analyzing stresses, and suffer the same limitations. Use of elastic
theory is much like use of the normal distribution.

As a first approximation, predictive uncertainty can be divided into

three categories:

® Parameter uncertainty -- ignorance of, or inability to measurg
soil and rock properties;

® Model uncertainty =-- simplication and approximation in abstract-
ing reality;

® Changed conditions —-- overlooking important mechanisms or

geological details.

Site characterization‘information enters predictions through param-
eters and boundary conditions. As used here, model uncertainty applies:
only to the geotechnical models for strength, deformation, and-flow, and
not to boundary conditions or identification of important mechanisms.

Strategic modeling of site exploration

The applicability of probability theory to site exploration lies

in its facility for handling two questions:

& How much effort should be expended in exploring a site and
how should it be allocated to return the most information?
¢ What inferences can be drawn from explcration data, and what

are the uncertainties associated with those inferences?
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The traditional temporal division of exploration into reconnaissance,
preliminary, and in-depth investigation is not particularly useful in |
strategy optimizétion, because the division is not along functional lines.
Thus a new taxonomy, one based on classes of problems, might be introduced.
This is not a replacement for the traditional taxonomy, just a-new way of
viewing the same problem. Figure4,19shows one possibility. Exploration

is divided into four categories of problems:

e Reconnaissance: Reviewing existing qualitative information
and subjective opinion to form initial hypotheses about site

geology and possible inhomogeneities.

e® Patterm Recognition and reconstruction: Recognizing geological
forms and extrapolating to areas not actually observed (i.e.,

mapping}.

® Search: Finding geological details, or reducing the posterior
probability of adverse details to acceptable limits., Locating

"non-stationarities" in statistically homogeneous fields.

8 Sampling Homogeneous Material Properties : Using field and
laboratory tests to infer in situ material properties related to
strength, deformation, and permeability. Sampling and character-
izing pervasive inhomogeneities (e.g., joints).

The strength of this characterization is that it provides an

organizing reference for the problems of exploration, in which functionally
similar tasks.are grouped together. The remainder of Section 4 summari?es

uncertainties associated with pattern recognition, search, and sampling

material properties; presents techniques for quantifying these uncertainties;

and estimates of them.



4.3.3 Parameter Estimation

Estimation of the strength, deformation, and permeability properties of
homogeneous zones or strata is made difficult by two sources of uncertainty.
The first is spatial variability of the sediment properties, which leads to
variation among observations at different location, and just as importantly
leads to the problem of selecting an equivalent deterministic (i.e., spatially
uniform) property for use in numerical modeling (Figure 4.20). The second is measurement
error, which leads both to bias and random fluctuation on top of the spatial
variation (Figure 4.21).

Spatial variation

The now commonly used model of spatial variation of sediment properties
is the stationary random field. A vector of soil properties y is represented

by a mean trend over space t(x} plus a random error term g(x), where x is the

basis of the space. Thus (Figure 4.22},
yix) = ti{x) + gl(x) (4.1)

The error term € is assumed to be autocorrelated in the space x, and possibly
cross-correlated among the various soil properties y = {yl ;..., yk}.

In the geotechnical literature work on sampling from correlated random fields
has been presented by Lumb {1974, 1975}, Vanmarcke (1977), Alonzo (1976), and

in a series of papers by Veneziano (with Faccioli, 1975; Kitanidis, 1977;
Queirez, 1977). This work is related to saﬁpling problems in geoclogy {Matheron,
1971, Agtefberg, 1970), hydrolegy (Rodriquez-Iurbe, 1974; Bras, 1974),
groundwater flow {Bakr, et. al., 1977; Wilson, 1978}, time series analysis

{Box and Jenkins, 1970), and other fields (e.q., Matern, 1960; Whittle,

1963}. vVeneziano (1979) has recently presented an overview.
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A random field y(x) is said to be stationary in the strict sense
if the joint density function of ngl},..., Zfﬁm} depends only on the

relative locations of Xy ooy X 0 and is therefore invariant with respect

1
to changes in the reference. This is a strong assumption, and usually
difficult to verify. A weaker assumption is to say the field is station%ry
in the weak or broad sense, meaning that the mean t{x) and autocovariance
function R(r} are invariant to changes in the reference (i.e., are the
same everywhere). This latter assumption is usually made for sediment
properties. Stationarity might be thought of as the stochastic equivalent
of deterministic homogeneity, and in fact some workers use "homcgeneity"
to mean what is here called staticnarity when dealing with spatial (rathér
than temporal) variables. ’

The feature of central importance in random field sampling is the r
autocovariance function, R(Ei,gj) describing the covariance of soil
properties at locations X, and Ej‘ Under the assumption of stationarity.
this function depends only on the vector separation distance between Ei and
Ej' to be denoted r, and not on the exact locations of Ei' Ej' Normalizing
R(r) by R{o}, the point variance of the sediment property, leads to the
autocorrelation function describing the correlation among properties at
various separations. The autocovariance function is of importance because
it substantially influences both the sampling properties of the field, and
the wvariance in predictions of physical behavior.

Given that soil properties are generally expected to be more similar
when measured at neighboring locations, and to become less and less similar
as their spatial separation increases, monotonically decaving R(r) are

usually assumed. Typical functions are shown in Table 4.2. The simpler
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TABLE 4.2 —— COMMONLY USED AUTOCORRELATICGN FUNCTIONS FOR
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of these, for example the exponential and squared exponential, have been
verified by field observations (e.g., Lumb, 1975; Hilldale, 1971; H8eq and
Tang, 1976) (Eigure; 4.23 and 4.24).

The extent of autocorrelation is commonly indexed by an "auto-
correlation distance™ ro, defined such that R(ro) = (l/e)c2. The meaning
of this index ecan be seen in_Figuge 4.25. Long rO imply wavy spatial
variations, whereas short r, imply rapid fluctuation. In the former case
an observation, such as at X, in Figure 4.25a, gives informa;ion about
sediment properties quite far from its own location; in the latter case it
does not. However, the reverse consequence is also of importance; observa-
tions at X, and Xy contain redundant information when r, is large, and
therefore cannot be treated as independent in drawing inferences about yix).

Despite the importance of R(r) in sampling and predicting physical
processes, it is an artifact of the modeling. There is nothing innately
random about sediment properties. The stochastic model is an.exprgssion
of ignorance about subbottom conditions, not random variation. Therefore,
depending on how this spatial variation is divided between a deterministic
mean trend t{x} and the random component e£(x), the autocbvariance function
and the point variance will change (Figqure 4,26).

Table 4.3 summarizes typical point variances and correlation lengths
for various sediment properties, when sampled at individual sites. These
correlation lengths result from assuming a spatially constant mean.

Figure 4.27 shows the autocorrelation function inferred for shallow (3.6m)

cone registance at the Brent B site in the North Sea (H8eg and Tang, 1978).

As can be seen, r, in the range 15 to 60 m is typical.
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Table 4,3 -- Typical variances and autocorrelation
lengths for sediments.

MATERIAL - PROPERTY T, SOURCE
coastal sand CPT 5m Tokheim (1976)
compacted clay dry density 5 Winch, et al.(1980)
(dam core) (horizontal
layers)
(vertical) 5 -=tlea
North Sea Clay CPT 30 . H8eg and Tang (1978)
dune sand SPT 20 Hilldale-Cunningham
- (1971)
Plastic clay : dry density
(vertical) 1.3 Vanmarke and
Fuleihan (1975)
Clean sand CPT 0.36 Alonzo and Kreizek
: (1975)
clay : CPT 1.91 -=M--

silty loam w/c 0.16 -="--
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Table 4.4 -— Empivical distribution function for various
801l properties.

Material Property pdf Source
compacted dry density A Winch, et al. (1980)
clay core
sand pile capacity A . Baecher and Rackwitz
' (1980)
dry sand bearing A
capacity Ingra and Baecher (1978)
silt e, N Schultze (1975)
silt uniformity Ex ="
coefficient '
Sands (various) n, e N -t
silts ("), n, e N -——tea
clays({") n, € N ——tma
marine clay 5, N Lumb (1966)
silty sand tan ¢°' N -—t--
clayey silt -t N —=tee
clayey silt S, N Singh (1971)
various e 1] Lumb (1970)

distributional forms: N = Normal, A = logNormal, B = Beta.
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Estimates of Mean Sediment Properties

Estimates of mean sediment properties from a finite number of cbserva-
tions follows fairly well known statistical results. Por the case of
widely spaced measurements such that the correlation among measuremnants
approaches zero, simple application of Bays' Theorem yields a posterior (i.e.,

after sampling) distribution on t(x), now assumed spatially constant,
©
£r(t]z) « £ (nizle), (4.2)

where z = {zl,....zn} are the observations, f£O(t) is the prior (i.e., be-
fore sampling) digtribution on t, and L(th) ig the likelihood (i.e., condi-
tional probability) of z given t.

The assumption is commonly made that variation of sediment properties

is Normally distributed, in which case for a diffuse prior, fO(t) « constént,
the inferred posterior on t is also Normal (Table 4.5). However, for a

|
broad class of distributions the probabilities distribution of the sample

. . . . s
mean, {1/n) & z;, given t is asymtotically Normal with mean t and variance

02/n {i.e., the sampling distribution), and although not correct statistically

|
is used as a proxy distribution for t. :
i

X \ . 2 . . |
In application, the variance g must itself be estimated from the

observations. 8Since the posterior distribution of t depends on 02, infer-

ences must first be drawn on the joint distribution f'(t,U]g), and theﬂ
|

integrated over ¢ to yield the marginal posterior on t, : I

£r(t) « f £9¢,0)L(z|t,0)do (4.3)

The well known result {e.g., Raiffa and Schlaifer, 1961) is a Student t

distribution on t. This result is shown graphically in Figure 4.38 for
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a sample of water content measurements.

For not widely spaced observations the variance of Figure 4.28
is a lower bound; Because the observations report redundant iﬁformation,
the uncertainty in the inference on t must be greater than in the inde-
pendent case. The sample mean z = Zzi/n remains an unbiased eétimator ;n
the relative fregquency sense, but the variance of the distribution of the

sample mean z increases to

n _
Z clz,,z,] ' {4.5)
A |

- 1
v{zlt} = —5
1 j=1

. n i

I

The exact increase in this variance depends on the pattern of observations
with respect to the autocovariance funétion R(x). For example, Qith the
Brent B cbservation pattern (Figure 4,9} and the corresponding R(r}
(Figure 4.27), the increase in variance from independent to correlated
observations is about 50%,

This increase in likelihood function wvariance, and therefbre in
inferential uncertainty can be reduced somewhat by differentially weighting
each z, according to its correlation with other observations. For example,

13

adopting the linear estimate
z=1 Wz ’ " {4.86)

where 0 < wi.i 1.0, and Zwi = 1.0; the weights w = {wl,...,wh}'can be
optimized to produce the smallest variance in Equation 4.5. Introducing
the Lagrange constraint A{Ewi - 1) = 0 and differentiating with respect

to w yields the optimal weights w*,
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(4.7)

= o
O |
b 1|
= o

S

where g:is the coﬁariance matrix of the bbservations.

Applying 4.7 to the Brent B pattern yields the weights show in
Figure 4.29. This reduces the. éstimate variance by about
7.1% compared with the simplé arithmetical average. Note that adding a
14th boring, with its corresponding cost, and assuﬁing it to be indepcndent
of the other observations, would only reduce the variance about 7.9%.*.

Estimates of Autocovariance Function

Among the more important insights gained by reliability moééling in
soil mechanics is the strong influerice of spatial variation of strength,
deformation, and permeability properties on physical behavior. Despite
this importance of spatial variability, the use of rigorous statistical
procedures for estimating autocovarience uncommon in present applications.
This reflects in part the mathematical difficulty of these procedures, but
perhaps more simply the general neglect of statistical unéertainty in
geotechnical analyses. This section summarizes.é few of the more useable
statistical results for estimating spatial variability.

The spatial variability of physiéal properties will be represented

by a stochastic process g(xl.x X5} = Z(x), in which gjg) is a vector of

2

properties at location x in space, Individual realizations of the process

are denoted here by the lower case symbol z({x).

* Appendix 4.3 contains further discussion of optimal estimation.
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Unless otherwise noted, the process EJE) is assumed to be second-order
stationary, in that the mean E{Z(x)} = u, variance V{2Z(x)} = u, and auto-

covariance function
C{E(?_Ki). E(gc_j)} = E{[g(g(_i)-y_] [g_(g_j)-gl} {4.6)

do not depend on location. For the case of vector z, both the variance
and covariance function are matrices, the off diagonal terms of which
reflect covariance or crosscovariance of the components of Z.

For simplicity, and in keeping with current practice, two simplifica-
tions will be made. First, attention will be restricted to scalar properties
Z, and the covariances amohg different physical properties (e.g., strength
and deformability) will not be considered. 1In this case the.variance

becomes o2 and the autocovariance
ci{z(x.),2(x)} = ¢ {x. ,x.} (4.7
i 3 2z i’

and obviously sz(O) = g?. Second, only one dimensional processes will be
considered (e.g., soil properties in the wvertical dimension, or aleng cne
horizontal direction). This, ¥ becomes a scalar.
The spectral density function of the process Z(x) is defined as the
Fourier transform of the autocovariance function
irw

S e sz(r) dr (4.8)

27 -

flwy =
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and is an alternative way of representing the same spatial variation.
Given a set of N evenly spaced cobservations of Z(x): z(xl), z(xl+6

ee. ¢ Zi(x ), the moment estimator of the mean 1 of Z(x} is the

1+(N-1)

sample mean (Figure 4,30).

z = ﬁ-z 2 (4.9)

where z. is used to denote z(xi), i=1, ... , N. This estimate is unbiased

in that E{z} = u, and has variance.

N-1
- 2
viz} = %- I - JIl-)Rzz(r) (4.10)

=-N+1 N
where R (r) is the autocorrelation function of Z(x), R (s) =-%¢c ().
z2 z2z g° “zz
This variance approaches O as N-»o, and thus is consistent.
The moment estimator of the process variance 62 is the sample

variance,

v{zi} = H%I 13 [zi-E)2 z g2 (4.11)

which is also unbiased, and to a first approximation has sampling variance
v{s?} = 20"/N . {4.12)

Thus, the estimate is also consistent.

The moment estimator of the autocovariance function sz(r) is the

sample autocovariance function sz{r),
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Figure 4,30 ~= Typteal spatial variation of soil
properties.
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Figure 4,31 -- Sampling bias of moment estimator

of autocovariance funcetion for one-dimensional
process.
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N-x "
I z,z, +r3% {4.13)
P R |

~ 1

C (r) =
N-r

1

ZZ

3

where r is measured in units of the separation 6.

The expected value of the sample autocovariance is

_' == 2
czz(r) [E{zlz } o-u*]

E{sz(r)} Llir

U
c (r)~ g (4.14)

where

N-1 .
n = 1lim I 1 - lnL c (r)
zZZ

Noreo  pm-N+1
R N
1 N-r i=1 “i
3 N
z = p)
%1+r Ny i=l+r 23 (4.15)

This means that sz(r) is only asyptotically unbiased, and in fact for finite
N can be severely biased (Figure 4.31).
The sampling covariances of the estimates ézztr) are approximately
(Bartlett, 1955)
1 N-r+8§~1

: . . L oY)
c{czz(r),czz(rfal} T =_(ﬁ_r)+1{1 Ner-g1¢ (4.16)



- 109 -

where

i
¢

Y(v) = [ v 0
0 8 svzo
l ~v-8 =(N-r)+1 < v < -¢ (4.17)
p(v) = C_(v)C (v+#8) + C (vir+d)cC (v-xr) + « {(4.18)
ZZ zZZ ZZ zZ2 I3

in which KU .8 is the fourth order cumulant (Kendali and Stuart, 1976)
r

r

For Gaussian processes k e 8" 0, and in general
r

of z,, z. z z, .
i’ ! T T u+s v,

i+x i+v
is ignored.

These equations illustrate the difficulty of estimating autocovariance
functions. Unless the actual autocovariance is known, neither the estimator
bias nor variance is known exactly. ‘Although this is uéually the case with
statistical estimators, because ézz(r) is strongly biaszed for short data
records, it can not be easily used to approximate either the bias term or the
sampling variances.

While the sample covariance function ézz(r) is at least a consistent

estimator of the true covariance functicn sz{r), the same is not true of

the sample spectral density function, in that (Parzen, 1961},

vim Be T @} - (1~ irr(e)) ™t (4.19)

N- =

for every real number r and frequency w. Thus,
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lim Pr{f(w}>c} = e—e/f{m) R (4.20)
N

which means that asymptotically E(m) is exponentially distributed with mean
and standard deviation f{w); f(w) does not converge probabilistically as

Moo,

Because sz(r) is a consistent estimator of sz {r), howewver,

tin 7™ Fw) aw =S A(w) £w) du (4.21)
Noow -

so that for every bounded continuous function A( )

lim /_° A £lw) do = [° Alw) £(w) do (4.22)
Nroo

and this weighted estimate is consistent. Thus, one can form the weighted

covariance estimator

400
g e wir) ¢ (r) , (4.23)
ZZ

Y=o

1
flw)y = E‘F

where the weighting function w(r) has the properties,

0 2wir) sw(0) =1

1

w(-r} wi{+r), all r

w(r) 0, x| > . . (4.24)
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In practice a number of weighting functions w(r} have been used, each
having slightly different sampling properties (Figure 4.32). As discussed
by Jenkins (1961), it is important to rémove the process mean before cal-
culating ézz(r) {and IN(w), below). The function w(r} is called the lag
window and M the lag number. The spectral window W(w) corresponding to

w{x) is found by taking the Fourier transform,

1 ¥ |
Ww) = =—— & ™ uw(n) (4.25)
21
r=-w
and
Wi-w) = W{w)
. _
£v Wiw) dw = 1 {(4.26)

Substituting terms leads to

A T
flw) = {ﬂ W(m-wv] IN(wv) dwv {4.27)
or

a o N/2 .
flwy = N I Wlw=-w ) IN(mv) . {4.28)
=-(N-1} /2 '

where
1 N ijw | 2 :
IN(w) = EFE El zj e {4.29)
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is the so-called periodogram of the data zj, j=1, ..., N. Note, IN( ) can

also be found from

[ I

2y sin wj}2 (4.30)

I=]
z
£
il
IH
—h—
[T -

a2
zj cos wi}l  + {

j=1 j=1

This estimatar (4.28) is called the smoothed periodogram estimator.

Since the latter two estimators for f{w) are mathematically equivalent,

they share identical sampling properties. In particular,

E(f} = 2 I wWw) flw) (4.31)
N J 3

where 2M is.the width of the window and the variance is, without loss of
generality, taken to be o2=1. If f{w) does not vary greatly within

(j-M) < w < (j+M) Figure 4.3.3,

" 2 +M ' _
vitw} = & 1 V) fe) . (4.32)
j="M J 3 ’ .

The estimator f{w) can be shown to be approximate]yx2 distributed

with the equivalent degrees of freedom (Koopman, 1974}

2 A
EpF = 2-E {£{w)} | - (4.33)
V{f(w)}

which varies with the window chosen (Figure 4.34). 'This allows confi-
dence limits on f(w) to be constructed and hypotheses on goodness of fit

to be tested.
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Figure 4.33 -- Variance and equivalent degrees of
freedom for various common windows (taken from Jenkins,

1961).
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Figure 4.34 —-- Various common windows corresponding
to those of figure 4.33 (taken from Jenkins, 18961).
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where A is the region within the sediment most influencing the behavior
being predicted; g{Gyl}, g{ﬁyz} are the influences of changes in the
sediment propertieslat locations X, and 52 or the prediction g{+}; and
Cl[+] is covariance,.

This optimization confirms intuition. More weight is given to obser-
vations when they are (i) independent of other observations, (ii) in.locan
tions to which the prediction is sensitive, and (iii) correlated with

nearby locations to which the prediction is also sensitive.

Measurement error

Sediment properties are difficult to measure without introducing bias,
both because the instruments or procedures of measurement disturb the sedi-
ment structure and because many measurements are made through correlations
with index properties. These correlations are partly theoretical, partly
empirical, and change from one sediment profile to another. Much effort
has been addressed to these bias errors throughout the history of modern
soil mechanics (e.qg., Ladd, 1976).

From a statistical point of view measurement errors are divided
into a systematic or bais component and a random component (Figure 4.35).
If the magnitude and direction of the systématic error is known, heasure-
ments can be directly calibrated. Thus, the only uncertainfy remaining
is the random one. The model for observation y of source property Y,

becomes
y = Y0+b+u (4.37)

. where b is the (known) bias and u is a zero-mean random variable with
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variance Ui . Table 4,5'shows various biases and random errors reported
in the literature for common measurements of sediment properties,

The situati&n'is seldom so simple, of course. Usually b is not known
with certainty, but only up to some probability distribution with mean b
and variance Uﬁ. Theﬁ, the error in the measurement has variance (0§+§§).
From the point of view of statistical modeling this characterization ade-
quately reflects the measurement uncertainty, even if one is uncomfortable
about grouping uncertainty over an unknown bias with "random™ fluctuation.
In fact, though, any such separation of measurement error is artificial
since it is conditioned on the level of detail of the model for measurement
error and on the extensiveness of the data base from which the calibrations
are taken. Restricted data bases tend to show more bias and less random
error, and the reverse for broad data bases. Reported variances like
those of Table 4.5 already confound variation in bias acréss different
sediment formations with random variation. A consideration that must
always be faced in grpupingijg withiji is correlation in the realized
errors across the observations z. If b is systematic, as assumed, then its

realization will be the same for all observations within the same sediment

mass and the model

= +b + + u
¥ Yo Ub ’ (4.38)
2 . . . .
where W Wﬂﬂ%gb), will systematically over or under estimate all observations.
The introduction of random measurement error increases the variance
of estimates of mean sediment properties and of the autocovariance function.

For point estimates of the mean with widely spaced cbservations,
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Table 4.5 —~ Reported Coefficients of Varistion for Various Soil Properties

Material

Clay

Clay Shale
Cohesive Ti11
"undisturbed”

compacted

Various Tills

Silt
Gravelly Sand
Coarse Sand
Medium Sand

Fine Sand

Property

S

liquid limit
plastic limit
¢lay content
specific gravity
dry density
cohesion {direct
shear, DS)
friction coef
ficient (t), DS
- D
-= DS
-~ triaxial D
—= triaxial D
- (U
-~ triaxial CU
~= triaxial UU
- triaxial U9
b
D
CD
CD
uu
L]

gr*r:rrn [ e S e I B T e B e B I )
|
I

=]

2 m
fbo';f:ofbﬁm

M
o QR

e
LW~
- - L] * L]

N DD

[ar
L] L R .

e
WD HPSRPRAON PR 00D D

» - - -
QUWO~NMOPAPULOOLHREOOWMBDORL -

B It W b

Source

Lumb(i)

Morse (1)

Continued...



- 19 -

Table 4.5 -— Continued

Material Property
Marine Clay c
London Clay ¢
Sandy Clay log(Cc)
Silty Sand t
Clay Silt t
c
¢
Ottawa Sand (loose) phi
- Ottawa Sand (dense) phi
Clayey Silt ' c
{unsoaked) phi
-] .
Clayey Silt e
(soaked)} phi
8
Clayey 5ilt "
CH c — triaxial UU
phi -~ UU
CL ¢ — UU
phi -- UU
ML, : c - T
: phi == UU
CH c — DS
phi —— DS
CL ¢ == DS
ML ' ¢ -— DS
Road Subgrade soil suction
soll suetion
Average over 1L
16 cohesive soils PL
Road base coarse CBR
density
PI
s
Plastic Clay cgmpression ratio
t
Fine Sands t
Gravel-Sands t
t

Coarse Sand

ot RN
~E N W OO LD S R W
- » » L] - L] L ] L ] 1)
T OO EUNWNN Wb
oo~

=~y
Q

38
13

14

Source

Singh (1)

Miura and Fujita (3)

Minty, Smith and
Pratt (3)
Ingles (3)

Vanmarke and
Fuleihan(2)
Schultze (2)

1. First ICASP, Hong Kong.
2. Second ICASP, Aachen.
3. Third ICASP, Sydney.
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Equation 4,10 becomes

S (4.39)

where U; is the measurement error variance. The effect on estimates of

the autocovariance is to reduce correlations among observations and to?mask
(hence increase the sampling variances of R(r)). Nevertheless, procedufes'
for estimating this error are available for regularly spaced.observatiéns.
Recent work by Veneziano (19xx) extends availaﬁle techniques to include non-

uniformly spaced observations.
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Figure 4,37
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4;3.4 Mapping the Distribution of Bottom Sediments

One of the most difficult problems in site investigation to quantify
is the uncertaiﬁty in qualitative distributions of sediments types, for
example in mapping or in.reconstructing profiles. As illustrated by Figure
4.17, this is a highly inductive task, based on familiarity with geological
.processes and history, and previous experience. Except by returning to
previous cases and comparing predicted with actual distributions, errors in
the intuitive contouring of sediment bodies are not immediately analyzdble.
Unfortunately, since even with past projects one never knows the true dis-
tribution of sediments, this is not possible.

On the other hand, errors in contouring sediment masses can be
estimated for fiwed classification procedures, if certain assumptions of
randomness are made on the geological process of sedimentation. For
example, if the sediment mass is contoured by nearest neighbor classifica-
tion (i.e., any uncbserved element in the mass is assiqned to the same
class as the nearest observation) and if the sediment mass is considered a
discrete random field, then estimates of percent of area misclassified and
the like can be made.

Following Switzer (196?) the spatial distribution of sediment~type-—
ji.e., zoning--can bé considered a discrete correlated random field. In
the two class case, or the so-called two-color map, a zero-one variable is
associated with each point in space; zero if the sediment at the point is,
say, clay and one if it is, say, gravelly sand. Then this random field

is used to predict the class at unobserved locations, or to select optimal

cbservation patterns.



Figure 4.38 -- Typifeal nearest neighbor
map for two-class problem.

probability

pj !i(r)

distancge

Figure 4.39 —-- Decay of probability of class
similarities or dissimilarities as a function
of distance.
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Prqbabilistically, if the classification at some point (xo,yo) in
the horizontal plane is material i, then the probability of material i:at
some point (xl,yl) must approach 1.0 if the points are spatially close,
and decay to the average fraction of material i, p;r as the separation

increases. A simple model is of the type

= ~Yr
Pi'ifg) = (1-p,)e + Py (4.40)

where P‘,i(E) is the probability of material i at some (vector) separation
distance r given that the original location is of material i. If Pi'i(E}
depends only on x and not on {x_,v ), (xl,yli then the field is said to be
stationary. If Pi,i{E) depends only on the scaler separation r, and not

the vector r, the field is said to be isotropic.

P, i{r) is uniquely related to the autocovariance through the relaticn
' :

r

R(r) = Pipi.i(r) - Piz. The decay in probability reflected in Pi i(r) is
an indication of the distance to which ¢lassifications can be extrapolated
away from an observed point., The smaller the average zone size and the
less smooth the boundaries among zones the more quicklx Pi,i(r) decays
{(Figure 4.37}.

Now consider that obsexvations of class at some finite number of
points n are made, and thaf a sediment map is constructed using a nearest
neighbor criterion (Figure 4.38). If an observation is of class i, theﬁ
the probability of misclassifying a point at nearest neighbor distance r is
P.'i(r) = {1~Pi’i{r)}. Similarly, if an observation is of class j, theﬁ
the probability of misclassifying at point at nearest neighbor distance r
is Pi’j(r).= {I—Pj j(r)}. For the two color case these functions are

shown in Figure 4.39. If f(r} ié the density function of nearest neighbor
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Figure 4,40 -- Nearest neighbor distances for équare and
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spacings in the plane {or space) then the fraction of the constructed map
misclassified is

d = Pi.ff(r)pj'i(r)dr + pj.ff(r]Pi j(r)dr . {4.41)

¥

+ = 1.0,
where P Pj 1.0
Por random cobservation points Poisson distributed in the plane the

neareast neighbor spacing is easily shown to be
E(r) = 2Mir exp(-MArl), {4.42)

where } is the spatial density of points (Figure 4.40). Similarly for
square and hexagonally grided cbservations, f{(r) can be shown to be as in
Figure 4.,40. Therefore normalized charts can be developed to predict percent
misclassified (Figures 4.41, 4.42). For other glven observation pétterﬁs
(e.qg., Figure 4.43) the percent misclassified can be estimated once f(x) is
determined. However, such patterns do not allow normalized chafts since
the criterion of their genesis is not specified.

To test the classification theory, eight soil maps from extensively
mapped regions were selected and used as base cases (e.g., Figure 4.43).
The two-color distributions of sediment type as mapped were conside:ed to
be the true conditicons, then cbservation points were randomly generated and
nearest neighbor maps constructed from the results. Observation points ﬁere

generated in Poisson fields, and in square and hexagonal grids. 1In total
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L%

Figure 4.43 == Typical base map for study of error rates in bottom
sediment mapsg.
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120 test maps were constructed of the eight base cases. For eéch test map
the percent misclassified was predicted from Figures 4.41, 4.42 and the
actual misclassified area planimetered. Results are shown in Figure

4.41. In general, the predictions of the theory seem accurate, and lead
to surprisingly large misclassified areas. Misclassified areas from 30 to
50 percent of the total map are not uncommon.

Several limitations of the present approach to mapping errors and of
the experiments intended to verify the theory must be mentioned. First, the
theory assumes no structural infiuence on the distribution of sediment types,
and no geological information to aid the mapping. The distribution of
sediments is assumed either to be or to behave like a random process. The
base case maps were selected to display isotropy of sediment distribution,
and therefore might be expected to be of areas with little structural
control. Nevertheless, these base cases do display apparently random dis-
tributions.

Second, the results of Figures 4.4it4-42 give no indication of the
spatial distribution of misclassification, and the one measure "percent
misclassified" is difficult to relate to risk analyses or design decisions.
In fact, the misclassified areas occur as belts surrocunding homogeneous
zones, so that the probability of misclassification near the middle of zones
can be very low. Although not contained in the present work, the probability
of misclassification at a point can be estimated by considering the classifica-
tions of surrounding observations {Figure 4745). By Bayes' Theorem,

ny n-

J
P{i} « p. TP, .(r ) TP, .{(r) , (4.43)
la=1 i,i a b=1 3.17b
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where P{i} is the probability of the point in question being class i; ny is
the number of neighboring points of ¢lass i, and ra, a=\1,...,ni their

respective distances; and simlarly for nj and r This procedure can be

b*
used to develop an entirely probabilistic map, if so desired f(e.g.,

Baecher, 1972).

In the case of the base maps the decay parameter Y is precisely known
because the true map is known. In normal problems of inference thié.is not
the case. BAall that is known about the site is the observations. Therefore,
Y must be estimated from thém. In principle this is easily done, but given
the form of Equation 4.40 applicationg are more difficult.

For a set of observations:the likelihood can be expressed by consider-

ing all pairs of points,
(4.44)

| n, nij | nji njj
L(data|y,p;) = TRyl }azlp"'(ra)azlpj'i(ra)azlpj'i(ra} ’
where nii is the number of pairs of observations cbmprising two i classes,
and respectively for nij' Ny and pjj‘ This can be maximized with respect
to ¥y and P; to obtain the maximum likelihood estimates, or can be used with
Bayes' Theorem tco infer a posterior distribution on (Y,pi). However, the
form of 4.44 leads to a high order polynomial and thus the solution must be
by enumeration. Because p; can be estimated from the fractioh of observa-
tions of class i, the enumeration can be reduced to one dimension, but is
still inconvenieﬁt.
A less satisfying procedure is to divide the distances between paired

observations into intervals and for each interval evaluate the relative fre-

quencies of ii to ji pairs, and jj to ij pairs. Since Pi i(r) + Pj i(r) = 1.0,
r r
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and similarly‘for jj and ij pairs, there frequencies can be plotted and
curves fit to them to estimate y and p; . The procedure works, but the
sampling variation of the estimators is difficult to untangle. Other pro-

cedures are discussed in Nucci and Baecher (1979},

The conclusion to be drawn from these analysis is that errors in
zonatioﬁ maps can easily bé in the range of 30%, and possibly more. The in-
fluence of such errcrs on risk estimates is difficult to judge, except in
quite specific problems. For example, in estimating unbalanced moments on
the skirts of a North Sea structure Tang (1979) has brought up the problem

of uncertain zonal boundaries. For such a problem the current analysis has

direct application.
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4.3.5 Finding Anomalous Details

This section is a review of current techniques for analyzing the
search for advefse geological details, for optimizing allocations of effoft,
and for drawing inferences from the results of search programs. No attemét
is made to redevelop mathematical founaations presented elsewherg, rather,
emphasis is placed on assumptions and applicability.

The problem of search in geological exploration is to locate or
detect a geological ancmaly of particular, although perhaps probabilisticg
description in an efficient way, subject to some initial probability dis—:
tribution on its location and possibly in the presence of "noise" or uncer-
tainty in interpreting field data. The problem of search strategy is how
to allocate effort such that the probability of finding the anomolous
conditions is minimized at a cost commensurate with the consequence of not
finding it. Typical targets of geotechnical search include soluticn
cavities, clay lenses, buried stream channels (e.g., high permeability zones
beneath dams), abandoned underground workings, geothermal resources, mineral
aggregate sources, and faults. Terzaghi's {1929} classic¢c definition of
minor geological details as, "features that can be predicted ngither from
the results of careful investigation... nor by means of a reascnable amount
of test borings " is expanded here to include features of somewhat
larger dimension and probability of detection.

Investigation for geological details or anomalous conditions must
start with a suspicion that such c¢onditions exist, what they might be like,
and which 1océtions (if any) are more likely than others. These are judge-
mental evaluations based on experience and knowledge of geology. Search
theory is a tool by which these initial suspicions can be logically combiﬁed

with field observations to draw deductive conclusions.



- 135 -

The basip model for search in geoloéical and geotechnical exploration
idealizes anomalous details as randomly located point targets with an
associated size and Shape distribution. For example, clay lenses might be
modeled as ellipses in the horizontal plane, the centers of which form a
Poisson or Negative Binomial point process, and the size of which is
distributed, say, logNormally. Similar distribution assumptions would be
required on obliquity and orientation. While insulting the geologist by
simplicity, such models seem to adequately approximate the spatial character
of many geological processes. Confirmation of this model has been provided
by, among others, Kaufman (1963) for ¢©il pools within individual plays, and
by DeGeoffroy and Wignhall (1970} for metallic mineral deposits. Nevertheless,
the model is not a good representation for all geclogical entities, which
must be kept strictly in mind, withiﬁ the past ten years substantial data
have been collected on statistical properties of geoclogical processes,
particularly spatial characteristics. Much of this literature is summarized
by Agterberg (1973). Many, perhaps most processes and formations in geoclogy
seem to folleow well behaved distributions which are fairly consistent across
different geological environments. |

Uniform search

Let f(x,y) be the density function (pdf) of target center location in
the horizontal plane. If no information exists on location, f{x,y) will be
taken as uniform, and the optimal spatial allocation of effort will alsc

usually be uniform. Uniform search will mean that, a priori, each infin-

itesimal element of the site has the same probability of containing an

observation. In geotechnical exploration uniform search means grids,
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Point grids

Random allocation is a baseline for the performance of grid patterns
of search. Consider a search strategy that randomly allocates observatiohs
independently and with equal probability to each infinitesmal element
of the site. For a target area, At assumed known, and a Site area %f the
probability of hitting the target with any one observation is At/hé. Thus;

the probability of hitting the target with one or more of n observations is
Pr(find/n) = 1 - (l—At/AS)n 21-exp (-n@a/a)}l  (4.45)

when At/AS < 0.2 (Figure 4.45).

Points grids are search strategies that allocate observations at
regqularly spaced points according to some prespecified geometric pattern.”
Typical of such strategies are evenly-spaced boring arrays. Such strategies
are so common in geotechnical engineering that over the years empirical
rules have been developed for selecting appropriate spacings (e.g.,
Hvorslev, 1949). Grid patterns assure coverage of a site, are more effi-’
cient than random strategies, and offer computational advantages when
analytically treating other facets of exploration such as mapping,

The probability of intersecting a target with a point grid depends
on the relation between two sets of factors: the size, shapé, and
orientation of the target; and the spacing, geometry, and orientation of
the grid. Because grids are periodic, their performance characteristics
can be analyzéd with reference to an individual cell {(for uniform f{x,y)).
The conditional probability of finding an existing target is determined

by the fraction of the cell area in which, if the target center lies, at
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least oﬁe cbservation will hit the target. For the case of random target
gize, orientation, or shape (within é family of shapes -- e.g., ellipses),
probabilities of a find are obtained by integrating over the joint |
density function of these variables. Representative results for square

and circular targets on square grids are shown in Figure 4.46 compa?ed

with random allocaticon. Results for elliptical and rectangular targets

of various'obliquities {(i.e., ratios of dimensions) are shown in Figure 4.47
and 4.48. Elliptical targeté with triangular (so-called hexagonal) gridé
are given in Figuré 4.49,

Several conclusions afe apparent from these figures. First, for low
probabilities of a find, target and grid shape are unimportant. This has
been shpwn b? Santald {19?6) for the more general case of any bounded (not
necessarilf convex) figure. If the number of observations per unit cell is

where Ac is the_area of the unit cell. For Pr(k > 2) = 0, the expectéd
number of hits is the probability of a find., The target size for which
the condition of only one possible hit holds depends both on the target and
grid shapes.. The second c¢onclusion ig that for regularly shaped targets,
precise target shape at a given obligquity has little affect on probability
of a find. The last conc¢lusion is that for1f£;7; below about 0.7, target
cbliquity has liﬁtle or no effect on the probability of a find.

Extensive tables of grid search probabilitfes have been computed by

Singer and Wickman (1969) and Savinskii (1965). There are inconsistencies
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between these two tabulations. The former, apparently checked in light of
these inconsistencies, would seem more reiiable. Two issues of strategy
may be concluded froﬁ these tabulations: The orientation af the long axis
of a rectangular grid maximizing the probability of a find is parallel to
the preferred orientation.of the long axis of the target; and the grid
obliguity maximizing the probability of a find is approximately equal to the
target obliquity.h

Line grids

Geophysical exploration tools are commonly allocated in line grids.
Making the simplifying assumption that a find (or tentative find) is
recorded if one of the lines transects the target, charts like those for
point grids can be constructed using the same approach {Figures 4.50 and 4.51}.

Although the assumption of only direct intersection resulting in a
find is simplistic, in many applications the approximation may be suffi-
ciently accurate. If this appfoximation is not sufficiently accurate, a
lateral detection function (LDF) may be introduced, relating probability of
a find to the minimum lateral distance between target and grid line. As
this distance increases, the probability qf detecting a target diminishes.
Common LDF's are shown in Figuie 4.52 (see Morse, 1974).

Introduction of a LOF leads to detection probabilities other than
zero and one for certain fractions of the unit cell. The prchability of a
find is obtained by taking the expectation over these areas. Typical re-
sults, here for an exponential LDF with fixed range b/2, are shown in
Figure 4.53, The.rate of decay of the LDF, perhaps more than its exact
form, can significantly influence the probability of a find in certain

circumstances. Information of the LDF for a particular exploration tool and
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target type would have to be developed empirically, or estimated by
physical reasoning. At present such information is difficult to obtain.

Inferences from uniform search

In the single target case, the probability of an undetected target

after a search has been made is
p’« pOll - p_(find/search allocation)] (4.47)

where pO and p' are the prior and posterior probabilities (Figure 4.54).
The dependence on prior probability is obvious.

For multiple targets the states of nature on which inferences are
drawn are the parameters of the assumed distribution models for mumber aﬁd
size (inferences on the size distribution of a gsingle target would be made
in the same way). A computational difficulty arises because number and
size, even if independent a priori, are dependent in the likelihood and
thus in the posterior distribution. This means many posterior distribu-
tions must be solved mumerically.

Consider only the number n of targets as a random variable, with
target size known. Prior information is encoded as é probability distri-
bution over n. This can be done by assuming the targets mutually inde-
pendent, in which casé n is a Poisson r.v. with density parameter A.*

The density parameter can be estimated from regional fréquency data, if
available, or subjectively. BAlternately, A can itself be considered un-

certain, a pdf assessed over it, and a compound Poissan distribution used for n.

*Work in mineral resource modelling seems to indicate that the Negative
Bionomial distribution {i.e., clumping of targets) is a better assumption.
Whether this applies to geotechnical details has yet to be investigated.
See e.qg., DeGeoffroy and Wignal (1970), DeGeoffroy and Wu (1970}, or Uhler

and Bradley (1970).
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Let the intengity of exploration be such that the probability of
finding any one target isg Pgs then the posterior mass function (pmf) of
number of targets when m is found are
' efg(—k)ln m m n-m
p (nmpg) = = [n]pf (1 -pp) (4.48)

{Were X considered the r.v. rather than n, updating would be by the likeli-
hood of A and p (n) found by integration.]

When no information on n exists prior to exploration either a uniform
or non-informative distribution might be used. For variables with range
[0,~) the non-informative prio? is usually taken proportional to 1l/n (see,
¢.9., Jeffreys, 1960}; prior ignorance is a controversial topic, however.

Adopting the non-informative prior,

r m~- 1 m n;m .
p {nmp.) = [n - 1} Py (1 -p.) (4.49)
which is the Negative Binomial pmf -- a convenient result. Moments of n
are: -
2
Eln] = m/p;, and VIn] = m(1 - p.) /P, (4.50)

Expected number of targets increases with the number found and decreases
with the search efficacy.

With both nﬁmbex‘andsize arernr@;pf is no longer a constant. If the
distribution of target size, b, is assumed to belong to some family of
distributions £(b[8), where 8 denotes the vector of parameters of the

distribution, then
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n-m

Lim|n,0) = £(]@)p, (1 - p) (4.51)

Pen

where Py is the probability of the search program finding a target of

size b.

Two stage uniform search

In geotechnical and geological exploration two stages searches are
common. These usually comprise an inexpensive, but imprecise screening
gtage like seismi¢ refraction, with a more expensive but also more pre-
cise follow-up stage, like borings,*

Two—-stage search with false targets (i.e., a noisy first stage) can
be approached from several perspectives, and universal optimizations are
difficylt to formulate (Stone, 1972). Precise modeling depends on the
operational strategy for selecting second*stage allocatiohs {i.e., which
anomalies are drilled)}. Optimization criteria are difficuylt because the
amount of effort allocated in Stage 2 is usually a random variable depending
on the Stage 1 outcome. For specific problems it is sometimes easier to
specify a loss associated with missing targets and minimize total cost,
than to maximize expected numbers of finds subject to stochastic constraints.

Consider the following example: Targets are random and independent
with sige distribution f(b|§). Somé'geophysical tool is allocated on a
parallel line grid, and every resulting ancmaly greater than magnitude A is
drilled. As the threshold magnitude A is decreased the detection probability
increases, but so does the number of false target indications caused by
noise. What first stage spacings should be used, and wha£ aﬁomaly magnitude

A should be investigated?

*In other applications two-stage scarch has been investigated by Allais
{1957) and Slichter (1955) for mineral exploration, and by Stone, et al.
(1972) for naval salvage.
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This is difficult to express as a constrained optimization but can
eagily be expressed as an expected cost minimization, if the cost of
missing an individuai target is specified. Let the regional frequency of
targets be A, and the detection probability be related to 4 as

Pr{atarget A} cexp(-ad). Similarly, for Gaussian noise the number of
level crossings above A is Poisson with density A{A} « exp(—Bﬂz). The
expected cost is a linear function of the expected number of missed targets
and the expected stage-two exploration cost (Figure 4.55).

Tt should be noted that two-stage optimizations are possible, although
more case specific than other techniques discussed here., As in the example,
this modeling often requires the assessment of many parameters,'and is
therefore subject to noise of its own. The most difficult parameters to

assess may be the "costs" of missing a target, as the exact relation between

exploration inferences and design decisions is difficult to identify.

Non-uniform or optimal search

If the prior distribution f(x,y) is non-uniform, the optimal alloca-
tion of search effort is also non-uniform. While formally optimized non-—
uniform allocations of effort are not common in geotechnical exploration,
they have received attention in operations research, and have been applied
to problems of mineral and oil exploration. The most well known optimal
search allocations are those due to Koopman {1956), which bear his name,
and the extension due to deGuenin (1961). The theoretical aevelopment of
these techniques is readily available in the literature (e.g., Morse,

1374; Stone, 1972) and need not be repeated.here¥ In essence optimal non-

uniform allocations reduce to investing more effort where the target is
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likely to be, and less where it is not. Depending on the situation, no
effort at all might be allocated to regions of the site with low or even
modest probability of containing a target.

The so-called detection funetion of an exploration tool plays a
central role in non-uniform search. The detection function is the condi-
tional probability of detecting (i.e., recognizing or finding) an existing
target (i.e., conditional probability) as a function of the amount of
search effort allocated to where the target is. While this would seem to
have little meaning for borings, on closer inspection this is not the
case, First of all, the prcbability of detecting certain details in hotings
is not 1.0 (e.g., faunlts). Secondly, one could think of borings not as
individual entities but as a spatial density, in which c¢ase a detection
function might look like Figure 4.47. For other types of exploration tools
like geophysics or field reconnaissance, the detection function is more

readily modelled as,

prlfind at x,yltarget at x,yv; Pi{x,yv}] _ .

Dly(x,¥}}

1

1 - expl - ¥(x,y)] . a.52)

where (x,y) is the amount of effort allocated to (x,y).

Optimiziﬁg,
prifind]l = fxfyD{w{x,y)]f(x.y)dxdy (4.53)

subject to the constraint
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v o= LS bixy)axdy (4.54)

where ¥ is the total effort, leads to a simple graphical solution for the
spatial allocation of effort (Koopman, 1956). In geotechnical practice
the exponential saturation function is often inappropriate (Baecher,
1972), but deGuenin (1961) extended Koopman's results to any detéction
function displaying diminishing returns. For the latter 6ptimizat10n
there is also a fairly simple graphical solution. Given the preéent
availability of computers and programmable calculators, numerical solution

is equally convenient.

DeGuenin's primary result is that the optimum spatial allocation of

effort satisfies the condition

DIy{x,y)] = X = constant (4.55

]
R TITES

Based on this property, the graphical procedure for obtaining the optimal

Y*(x,y} is:
STEP 1l: Select the initial value of . and evaluate the gquantity X/D'(o),

where D'(o) is the derivative of the detection function evaluated

at ¢(x,¥y) = 0. All points at whichy (x,yY) > o satisfy the conditicn
, .
f(x,y) > A/D (0) (4.5¢€)

STEP 2: Limiting discussion to detection functions for which the derivative

with respect to Y(x,y) is continuous, an inverse function
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bix,y) = g{A/f{x,y}) (4.57

exists; From A and f(x,y) and Equqtion 13, determine and graph
Pix,y). |

STEP 3: Vary A until the area under ¢(x,y) equals the_total effort .
The resulting distribution §*(x,y) is optimal.

If the importance of finding targets is different in different loéa—
tions of the site,.a utility function defined over the sitg can be intro-
duced. The optimal condition becomes that of maximizing expected utili£y,
whicﬁ is mathematically similar to maximizing probability of a find, with
f(x,y) replaced by f(x,y)Jul(x,y). In either case, the probability of a
find (or expected utility) is an immediate result of the graphical solu-
tion, as is the posterior pdf of location.

Clearly, the optimal allocation depends on the prior pdf of location,
which in most cases is subjective and poorly defined. However, the alloca-
tion depends on fO(x,y) only through the logarithm, and is therefore .
insensitive to minor imprecisions in the subjective asseéssment. The prob-
ability of a find, and the posterior distribution depend linearly on fogx,y),
however, and are more sensitive to imprecisions. The allocation derived
by such optimizing procedures is for search effort defined continuously
in both space and magnitude. Geotechnical tools are usu&lly discrete in
space, and therefore must be tailored to approximate the optimal solution.
More work is needed on rules for making such approximations, and their

affects on probability of a find.
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Sequential search

In a sequential procedure the pdf of location is updated after each
observation. In cerfain cases sequential procedures increase the prob-
ability of a find because observations are made on the basis of all
available information.* At least four criteria of optimality might be used
for sequential search: minimizing of expected amount of effort to find
a target, maximizing the probability of finding a target with a given
amount of effort, minimizing the conditional probability of an undetected
target after a fixed amount of effort has been expended, and minimizing
the expected amount of effort required to reduce the probability of an
undetected target to a fixed level. Fortunately, each criterion leads to
the same optimal sequence of observations (Baecher, 1972). The optimal
strategy is myopic, at each stage the next observation is allocated such
that the ratio of incremental probability of a find to incremental cost
is maximized. Again fortunately, search is one of the few problems in
sequential decision making for which myopic strategies are glcobally opfimal
{e.g., DeGroot, 1970}. Cmf's of the number of observations to a find caﬁ
be computed by enumeration, as can the cdf of cost, if spatially variable.

Sequential search procedures, aimed at finding.minima, maxima or ofher
properties of a continuous or trending field (e.g., the maximun depth of
soil cover), are analyzed with techniques differing from the present one#-
In continuous field cases spatial characteristics of the field are used to

locate observationg. Thus, observations are not independenf of one another.

*In the special case of sequential non-uniform search with discrete stagés
of spatially continuous effort, sequential search can be shown to have no
advantage over single stage search (Koopman, 1956; deGuenin, 1961).
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While not discussed here, these problems are frequent in non-linear pro-
gramming and related disciplines, for example, Wilde (1964) treats strategy
optimization fo? deterministic surfaces. WVeneziano and Faccioli (1975}
treat special problems in strategy optimization for Gaussian random fields.
In sequential search as in one or two-stage searches, optimal stop-

ping rules can be determined by straight forward decision theory

techniqgues.

4.4 Magnitude of Erxrors in Site Characterization

Based on the above discussion of sources of uncertainty in site
characterization, the following is concluded. The COV of averaged sedi-
ment properties for design due to spatial variation, statistical uncer-
tainty, and random_measurement errors should be expected to be about 30%
and could rise to 50%. This does not include bias introduced by the
procedures of measurement. The error rates in maps of sediment distribu-
tion defined as precent misclassified is expected to be on the order of 25s.
Except in special applications, however, these errors are less important
than those of parameter estimation due to spatial averaging. Finally,
given the assumed regional frequency of clay-peat channels are typical
exploration pregrams, the probability of an undetected anomaly iz less

than 1% and its expected horizontal diameter is about 4m.
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Appendix 4,3

The linear estiﬁate 2 = Zwizi presented in Section 4.3, is optimized
to minimize the wariance in éstimates of the spatial mean t. However, iﬁ
the use to which the inference is to be put is kﬁown, more appropriate
criteria of optimality can be selected. For example, if the purpose of
the inference is to predict the behavior of the platform througﬁ gome mechan-
istic mbdel g{y(g)}, where y(x) is the realization of the random field ip
the space influenced by the platform, and if in the modeliné y({x) is
replaced by an equivalent deterministic (i.e., uniform) parameter 9,
then the estimator 2 for ¢ can be optimized to minimize the variance of
the prediction

min E[(gly(x)} - g{y})2] . (4.34)

w

Replacing ¥ by Ewizi and taking a Taylor's series expansion of the
variance of g{ylabout its mean (i.e., g{y|(x}} assuming g{-} is linear
vields differentials of g{+} with respect to the sediment properties.
Again assuming g{+<} linear, these differentials of the function become
functions of the differential, and setting the derivatives with respect to

w equal to zero yields,

wW*
(4.35)

>

!
| —
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O |-
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-

= T ' are, respectively,

The influence factors 17" 'n

| =

= .36
Ti i i f{Gyl}g{Gyz}{c[yl,zi] + CIyz,zil}dnldaz {4.36)
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5. GEOTECHNICAL MODELING

It is often said that two things distinguish soil mechanics
from other brancﬁes of civil engineering: uncontrollable material proper-
ties and poor mechanical models. Yet the magnitude of medeling error is
seldom quantified. 1In this section geotechnical models of stability aﬁd
deformation are conside:ed, to estimate the magnitude of uncertainty iﬁ
predictions of behavior deriving from parameter uncertainty and model
inaccuracy.

For both types of models empirical data analfses have been made
to compare the predictions of simple widely.used formulae with observa-
tions, and analytical approaches have heen developed to assess the in-l
fluence of spatial variation of bottom parameters. Together, a first
estimate can be made of the combined uncertainty of predictions.

A limitation of the present analyses is that they focus primarily
on static behavior, whereas dynamic wave loading is an important concern
offshore. While limited attention is paid to dynamic analysis in
Section 5.4, the empirical record against which to compare dynanic pre?
dictions is poor and fundamental mechanisms of soil behavior under
dynamic loading are poorly understood (e.g., liquafaction under wave
loading). Thus, quantified conclusions on the uncertainties of 1:':m=.=di<:—E
tions of dynamic preformance are in large measure speculative, and must
be extrapolated by what we know of uncertainties in predictions of static
performance. This is a limitation of current practicé which a formal

analysis of uncertainty can do nothing for.
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5.1 Epistemolcogy of Modeling*
This section reviews the logical basis of modeling and the sources

of uncertainty in model predictions.

5.1.1 Logic of Modeling

Models can be viewed from a syntactic, semantic, or_pragmatic perspec-
tive. Leés precisely; a model can be thought of as exhibiting relationéhips,
truth, or usefulness. The distinction between syntactic and semantic
models is exclusive, while either may also be pragmatic.

The view adopted heré is the syntactic, as summarized in Tarsky's
(1961) definition of a model as, "...a possible realization in which valid
sentences of a theory...are satisfied...." By this definition both a
mathematical (or symbolic) construction and reality itself would be said
to be models of a chosen theory. The theory is "a linguistic entity con-
sisting of a set of sentences" and is correct if internally cdnsistent
according to the rules of mathematical logic (e.g., Suppes, 1961). A model
then ig any set of objects and relations among or operations upon them
which conform to the theory.

Among models of the same theory certain isomorphisms exist, and thése
isomorphisms are used to infer the behavior of one model from that of
ancther, even though there may be no interaction among models. While the
view is syntactic, it would appear pragmatic as well. From the prégmatic
view éhe central questions are, is reality a meodel of the chosen theory,:
and what is the extent and character of isomorphisms between reality and

other models of the same theory?

* Work leading to the discussion of Section 5.1.1 has not been funded
by Project SeaGrant.
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The semantic view that models are correct (true) or exact representa-

tions of reality can be rejected almost a priori. However, it surfaces

implicitly in hfpothesis testing approaches to model uncertainty, and is
therefore not without apparent adherents (Section 5.1.4). In the decision
context models are used not because they are correct, but because they
allow better decisions to be made (e.g., Veneziano, 1976). Models of
ground deformation are neither right nor wrong, and neither true nor false.
Predictions of reality based on model results reflect subjective opinion

on the degree to which reality and the mathematical construction are both
models {in the syntactic sense) of the same theory, and on the isomorphisms
between reality and the construct. In application, a mathematical model
is not constructed from reality itself, but from a chosen theory which
reality is thought to satisfy.

A model, whether reality or a mathematical construct, comprises a
rich variety of interrelational properties, some of which exceed the
requirement of satisfying the valid sentences of a chosen theory. While
izomorphisms among models of a given theory raflect the common inter-
relational properties they are constrained to exhibit, isomorphism may not
extend to those interrelational properties not constrained by the theory.
Therefore operations on a mathématical model may exploit properties which
reality does not exhibit, and lead to conclusions that cannot be trans-
ferred.

Paraphrasing Ackoff (1962), we assign numbers to events and objectg
because they have interrelational properties that are well understood,
and these interrelational properties can be used to deduce conclusions

that were not otherwise apparent. Numbers, however, have interrelational
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properties that events and objects may not share, and thus the deduced
conclusions may not apply to reality,

These comments lead to the concepts of richness, power, and realism.
Rehness here means the capacity of a model to exhibit subtle variations
in behavior. Power means the capacity to allow strong non-trivial infer-
ences or extrapolations. Fealism means strong and broad isomorphism with
reality. These qualities are usually not maximized in a single model, s0
one may use a powerful model to extrapolate behavior, and calibrate it
to a realistic model known to be strongly isomorphic with reality.

Within the context of the syntactic view, the central guestions for
application_remain those based on induction, not deduction: is reality a
model of the chosen theory, and how far do isomorphisms among models exéend?
Neither question admits a yes or no answer. Reality may be a model of a
chosen theory only at some level of aggregation (e.g., jointed rock masses
as models of Darcian flow), only under restricted conditions (e.q., low
particle velocities modeling laminar flow), or only in an approximate Qay

{e.g., Mohr-Coulomb strength criteria}.

5.1.2 Information Content of Models

With the possible exception of simple curve fitting, the introduc;
tion of a theory from which a mathematical model is constructed intreduces
information to an analysis not contained in the observation themselves
(Kaufman, 1972)., This information is added by assuming reality to be a
model of the theory.

An important question on the relation of data and professional
opinion is the amount of information added by adopting a théory, and there-

fore a mathematical model. The theory reflects a history of empirical
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observatigns, and therefore one measure of the information content of al
theory is the total information contained in those observations (Cornell,
1979; Veneziano; 1979) . While the set of cbservations confirming, say,
Darcy's law cannot be enumerated in practice, one might assume that somé
sufficient statistic could be defined camprising this information. This
might be the prior model credibility of the composite Bayesian approach
(Section 5.1.4). while useful, this concept underrates the importance of
induction in theory formulation (e.g., Salmon, 1966), and possibly carries
the potential for leading the unwary into a semantic view of models.

A different approach to the amount of information in a chosen
theory, and a mathematical model of it, is the degree to which the probé
ability distribution over predictions is reduced by introducing the |
theory, as compared with that deriving solely from site specific observé-
tions (i.e., simple curve fitting or interpolation). This definition is
akin to informational entropy.

Neither of these approaches by itgelf is satisfacotry. Both the
power of a mathematical model and its realism (here, confirmation) should
influence the amount of information it introduces. The statisﬁical view

(data record) deals with realism; the entropy view deals with power. A

combination is regquired.

5.1.3 Uncertainty in Modeling

Decision analysts and Bayesian statisticians would hold that pre-
dictions of performance, whether they are assessed directly or come from
mathematical modeling, are merely statements of subjective degreeswof—bélief

about the world. In quantifying the uncertainty in model predictions,
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uncertainties in input parameters 8 are assessed and then propagated
through the model. But a carefully assesscd probability distribution
{(pdf) over  gives illusory satisfaction of having rationalized pro-
fessional uncertainties. _Few decision analysts, let alone safety analysts,
would accept a model prediction, even though containing parameter uncer-
tainty, as a complete statement of uncertainty in the real world,

As a first cut, the sources of uncertainty in making prediction of
reality from mathematical models are the following:

e Theoretical Misunderstanding -- reality is a model in which not

all the valid sentences of the theory are satisfied, or which
has important interrelational properties exoginous to the theory.

e Structural Inadequacies -- objects and relations in the mathe-

matical model are highly simplified compared to reality.

& Boundary and Initial Conditions —~ the mathematical model un-

like reality is isolated from an environment.

® Mathematical or Numerical Approximations —- simplifications and

approximations are used to obtain guantified predictions.,

® Omissions -- important facets of reality may not be reflected

in mathematical meodels.

The amount of uncertainty contributed by these sources can be iarge,
and alsoc biased. 2 common way of handling this bias is by calibrating
the mathematical model results to observations of reality through the
parameters, Thus, the estimates of 8, as expressed in the pdf £(9),
incorporate not only the physical meaning of 6 but also the model bias
{e.g., Lambe, 1973). BAn example of calibrating by modifying parameter

estimates is statistical filtoring of process response (Gelb, et al.,
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1974), i.e., "Kalman" filtering. 1In this case parameter estimates are
not independent of the model, and cannot be assessed in isolation. This
is an important point for site characterization studies.

A similar calibration of the mathematical model by altering £(6) is
seen in changes among domains of prediction. The linear Mohr-Coulomb |
failure criterion for rock is usually only an approximation to an empiri—
cally non-linear failure surface. Theiefore the cohesion and friction
coefficients used in analysis change with the normal stress of interest
(Figure 5.1).

Attempts to guantify the contribution of uncertainties other than
0 run afoul of two problems. Either the uncertainties cannot be known
{e.g., omissions of important failure modes), or the uncertainties refl@ct
an artifact of the modeling (e.g., boundary and initial conditions are

chosen to calibrate the model, not usuwally to represent some physical

aspect of reality).

5.1.4 Dealing With Model Uncertainty

Quantifying model error is more difficult than identifying its
sources, and the contribution of certain sources cannot be established
analytically (e.g., omissions). Therefore past attempts to handle model
uncertainty have been primarily based on empirical validation.

In frequentist theory model uncertainty work has primarily concen-
trated on the issue of model selection: which of a set of models is
"best," or is a model under consideration adeguate? While hypothesis
testing approaches imply the semantic view of models, it would be unfair

to suggest that the modelers themselves subscribe to that view. Other
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techniques such as maximum R; or cross validation seek the model that
best fits the data according to some prespecified, usually ad hoc, criter-
ion. The frequentist techniques.do not allow consideration across modelg.

Bayesian techniques of model validation are basedion posterior
probability. qiven an inference set of models M = {ml,-..., mg-and data
z2=1Z;, «.-, Zn}, the best model is that which is most probable in
light of Z. The analysis can be extended to include a loss function for
selecting the "wrong" model, and the selection treated as a decision.
Note, however, the implied semantic view of models.

A more interesting problem is that of combining model predictions
across models.. This has been treated by Giesel {1969), qud (1978},
Grigoriu (1976), and veneziano (1976) among others. The approach of
these efforts has been what is here called the composite Bayesian distri-
bution (CBD}. The CBD is a linear weighted sum of the model éredictions
over M. Weights are taken proportional to the posterior probabilities
{or densities) of the models, again implying the semantic definition.
Let S = 5.,

respectively, where Si =1 if mi is the correct model, and zero otherwise.

ey Sh be zero-one parameters associated with ml, caer My,

Clearly zsi = 1,0. Letting & be the model parameter with respect to each

model,
£1(s,0 |z « £7(s,8) L (z]s,8) . (5.1)

The predictive density function over some prediction y is found by

integrating (summing) over the models and parameters
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Elylz) = fre(y|m ,0) £'(s,8]z)amap . (5.2)

The difficulties with this approach are that it is implicitly
semantic, and that it assumes independence of model predictions. It also
exhibits the undesirable property that as the dimension of M increases,
the predictive density function of (¥) becomes increasingly diffuse. By
introducing a new model, uncertainty in the predictioq.increases even if
the prediction of the added model is consistent with other model predic-
tions, and even if the added model is based on a different theory. Thus;
if three models yielded the predictions of Figure 5.2, the CBD might look
something like Figure 5.3, This would not seem a particularly useful
result. The problem is that the prediction may contain more information’

than is being exploited.

Te answer these objections, a second approach to model aggregation
has been introduced which is based on a joint likelihood concept {leung,.
1979). The joint likelihoéd concept treats the model predictions as
information, in a Bayesian sense, and defines a joint likelihood function

over them. Thus the predictive density on y becomes

A ~ o] ”~ ~ .
£ 0ylFye cens T @ EOLE e T (5.3)
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where Yyr ceve ¥ are the predictions of the n models and may be either
deterministic or probabilistic, The advantages of this approach are
that it treats model predictions as they are intuitively treated, it allows
for correlation among models, and it implies a syntactic view of models.
Furthermore, within this procedure the addition of new models reduces predic-
tive uncertainty in y, if the model results are consistent with one another.
That is, the additional model prediction adds information and therefore
confirmation to the prediction of y, rather than adding another random
error.

The importance of correlations among mathematical models is seen
in Table 5.1, in which the maximum likelihood estimate of the conditional
correlation coefficients among a number of foundation settlement models
and a number of pile capacity models are shown. The correlation can be
large because the individual formulae may be models of related or over-
lapping theories, even though the mathematical structure of the models
are different (e.g., most assume elastic stress distribution). This is
an important point: if model predictions are correlated, liﬁtle new in%
formation is developed by performing parallel analyses. Furthermore, t@e
sources of dependence may be subtle.

Both the CBD and joint likelihood (JL) methods can be cumbersome
in specific¢ applications, and both have been formulated for use with
empirical verification data. In principle, this need not be the case.
For the CBD approach the density function f(s) could be taken directly

from expert opinion. Similarly, as Morris (1974) points out, the likelihood
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Table 6.1 -- Conditional correlations among model predictions

PILE CAPACITY MODELS
Eng'g News Gow Gates Danish P.C. Hiley ‘Janbu

Eng'g News 1.0
Gow _ 0.8
Gates 0.2 1.0
Danish 0.2 0.3 | 0.7 .
Pac Coast 0.1 0.3 .
Hiley 0.1 0.7 0.6 .
Janbu 0.5 0.6 | 0.6 . ] 1.0
SETTLEMENT MODELS
Elastic B-DeB  B-DeBlc) M Mlg) S TP TP(c)
Elastic 1.0
Ruisman-DeB. 0.8 1.0
Buisman-DeB. (¢} 0.8 0.9 .
Meyerhof 0.1 0.1 0.0 1.0
Meyerhof (c) 0.3 0.1 0.8 { 1.0
Schmertman 0.8 .9 . -0.1 0.1 1.0
Terzaghi & Peck 0.1 0.1 0.1 0.9 0.8 |-0.11]1
Terzaghi & Peck (¢} 0.1 0.1 0.8 0.9 0.1]o.8 1.0J
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function is always a subijective choice even if updated by data. The JL
function of {yl, vy yn} could alsoc be assessed from expert opinion.
This seems a poténtially fruitful area of work since very little has been’
done on gquantification of model uncertainty and aggregation, and because

considerable insight may be gained by further study.

5.2 Stability Modeling

Stability against strength failure of bottom sediménts due to
imposed platform loads are commonly analyzed by limiting equilibrium
analysis, balancing imposed forces against the cumulative cohesive and
frictional resistance mobilized over an hypothesized critical failure sur-
face. The most common semi-empirical model is Terzaghi's superposition |
of cohesive, overburden, and frictional resistanﬁes. The empirical basisl
of this formula is well developed, and analyzed in Section 5.2.1. Other |
models with which there are fewer verifying studies, but which nevertheless
are in wide use offshore have been presented by Hansen (1970) and Meyerhéf
({1963) . .

Analytical methods admitting consideration of spatial wvariability
are mostly based on slope stability models using various methods of
slices (e.g., Bishop, 1955; Morgenstern and Price, 1965}. Several $?= 0
analyses have been presented in the literature (e.g., Veneziano, et al.
1977), but the number of frictional analysgses combining methods of slices
with spatial variability is very limited (e.g., Alonzo 1976; Peintinger,
et al., 1980). A model based on modified Bishop Method was developed

to establish the influence of sﬁatial variability, and is presented in

Section 5.2.2.
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5.2.1 Semi-Empirical Formulae

Bearing capacity predictions based on Terzaghi's superposition
method are partly théoretical and partly empirical. Many theoretical der-
ivations have appeared in the literature as have the results of tests on
model and prototype footings. This section addresses the uncertainty in
bearing capacity predictions, inferred through statistical analyses of
currently available data. The magnitude of aggregate uncertainﬁy in
bearing capacity is shqwn by example.

Previous Studies

While many studies of bearing capacity have been published, few have
attempted to quantify uncertainty. Fewer still have based such quantifica~
tion on large numbers of empirical data. Most studies approach uncertainty
through modeling in which parameters are assumed spatially constant but not
knownwith certainty.

Singh (1971), H8eg and Murarha (1975}, and Kraft and Murff (1975)
have published similar analyses of foundation stability. These analyses
yield surprisingly high probabkilities of failure (pf} at commonly acceptable
deterministiec factors-of-safety (FS). Typically, probabilities are cal-
culated under the assumption of Normal distribution of the saféty margih.
which is conservative and in part explains the high pf's. Further, thoﬁgh,
the authors cite the sensitivity of bearing capacity factors to effective
friction angle as a primary source of uncertainty.

' H;eg and Tang (1978) considered slip surface stability under an off-
shore gravity platform. In the undrained case they conclude that approx-
imately 70% of the uncertainty in FS predictions are due to undrained |

strength. Another 25% they attribute to loads. The authors note, however,
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that uncertainties deriving from poorly understcod mechanisms {e.q., behavior
under c¢yclic loads) cannot be directly included in calculations.

Thecoretical Consideration

The ultimate bearing capacity of a shallow, concentrically loaded
strip footing on a homogeneous soil is commonly determined from the Terzaghi
(1943) superposition method. Combining the contributions of cohesion,

surcharge, and unit weight, the superposition method yields:

- 1
- + s L 5.4
q, = o8, qu 2'YBNY {5.4)

ultimate bearing capacity for a vertical concentric load

48

Nc'Nq'N = bearing capacity factors
B = foundation width
g = uniform surcharge arcund foundation
5,7 = effective soil cohesion and effective unit weight

The special case of interest here is the bearing capacity of a foundation
initially on the surface of a cohesionless soil (c=0,q=0). Accordingly,

Equation (5.4) becomes:
1
= —vyBN 5.5

Modification of Equation (5.5) for load eccentricity, load
eccentricity, load inclination, foundation shape, qnd foundation size

introduces several correction factors. Bjerrum (1973) suggests the form:
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qv,a =-%YBNYRYSYIyEY . {5.86)
where qv,a is the ve?tical component of stress at failure for an inclinéd
load. The terms R , S , E , and IY are correction factors for foundation
size, foundation shape, load eccentricity, and load inclination,
respectively.

Theoretical bearing capacity factors, NY, for strip and circular or
square footings differ by factors of two to four. The sensitivity of NY
to frictien angle is particularly notable with 5% deviations in friction
angle causing almost 50% deviation in Ny' Theoretical solutions for NY
assume a unique value of friction angle. Substantial research indicates
that the selection of cne friction angle to model the behavior of sand
is a major simplification {Ladd, 1977 , Lee, 1970 , Rowe, 1969 , Corforth,
1964; MNash, 1953) , The appropriate friction angle for selecting NY
depends on: (1) the mode of failure, (2) friction angle anisotropy.

(3} strain compatibility, and (4) curvature of the Mohr-Coulomb strength
envelope. Terzaghi {1943}, Meyerhof (1963}, Hansen (1970), and Vesic
(1973) suggest methods for selecting an appropriate friction angle.

Of particular importance in the extrapolation of small scale footing
tests to large scale foundations is the curvature of the Mohr-Coulomb
strength envelope. For model footings, stresses are low and the friction
angle large. Field scale foundations produce higher stresses with a cor-
responding decrease in friction angle. As shown by Graham and Pollock
(1272) spatial vafiation of the mobilized friction angle can be large.

Foundation roughness also effects bearing capacity. Meyverhof (1955)

indicates the bearing capacity of a rough foundation (§ = $) is twice that
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of a perfectly smooth foundation (§ = 0°). Hansen and!Christensen (1969)
suggest a 50% decrease in N for § < 20°. For § > 20° the foundation
behaves perfectiy rough regardless of 3: Chen {1975) indicates similar
behavior for § = 17°.

Evaluation of Model Footing Tests

Data from many model tésts exist for the bearing capacity, inclination,
and eccentricity factors. Little information is available for the shépe
factor or effect of foundation roughness and size. Several difficulties
arise in aggregating tests from various studies. Differences in: (1)
test apparatus, (2) test procedure, (3) identification of failure load,

{4) footing material and roughness, (5) control of soil density, and (6)
measurement of friction angle, all effect comparison. Despite these Aif-
ficulties, the present analyses treat experimental data as reported.

Figures 5.4 and 5.5 presents experimental results for rough footing'
with length width ratios (L/B) of one, and six. AnL/B ratio of six is
essentially a strip footing, while anL/B ratio of 1.0 corresponds to circﬁlar
and square footings. Friction angles are from triaxial tests with confining
pressures of one-half to two tons per square foot. Friction angles vary
from 28° to 45°.

By inspection, NY is log-linear over the test range in both groups
of data. Accordingly, linear regressions of lnfny) on $ were thought
appropriate. Standard linear regression (i.e., least squares estimation}

yields,

= 1.667 + 0.173¢ (5.7)

Inm) g



The sample size (n), correlation coefficient (r), and error
(o) are 130, 0.947, and 0.0425 for L/B = 6 and 145, 0.925,

. . . 2
for L/B = 1, respectively. Statistical tests (x ) show the
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ln(NY) L/B = 1

= 2.107 + 0.173%

be Normally distributed and homoscedasgtic,

values of In(Ny)} given .

The regression lines shown on Figures 5.4 and 5.5 are

given $ are (Aitchisoh and Brown, 1957},

where

Thus,

1
E[NY] = exp_{E[ln(NY)] + EV[ln(NY)]}
U[NYI = exp{2E[ln(NY)] + V{ln(NY)]} .
{exp {U[ln(NY)] -1}
E[ln(NY}} =3 + B(§
VIn(v_ )] = o°
AL ® 1n(n)
Y
E[Nyl LB =6" exp {~1.646 + 0.173(¢$¢)}
V[Ny] 1/B = 6 = (0-429)exp {-3.292 + 0.346(¢)}

The expected value and variances

(5.8)
variance
and 0.0864
residuals to
the expected
of NY itself,
(5.9)

(5.10)

{5.11)

{5.12)

{5.13)

(5.14)
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E[NY] LB = exp {-2.064 + 0.173(¢)} (5.15)

I
[

(0.0902)exp {-4.128 + 0.346($)} " (5.16)

U[NY] LB = 1

Figure 5.6 compares the E[NY] with theoretical solutions. The E[NY] is
generally larger, by up to a factor of two. The slopes however, are
gimilar. |

Extrapolation of Equations (51.3) through (5.16)-to field scale
foundations requires consideration of size effects. Dimensions of the
model strip footings range from 1.5" to 2.5". A representative value of
2" can be used for determining R . Similarily, dimensions of the circular
and square models are about 4". To extrapolate these model dimensions to
field scale foundations of 5' to 10' involves Bfield/Bmodel ratios of 20
to 50. The reduction in bearing capacity, therefore, will be significant,
and even with proportionally small error in RT' the absclute er;or will be
great.

Experimental results for RY are shown in Figure 5.7. The Graham and
Pollock (1972) scale dependent plasticity analysis for X' - 0.30 and K’
= —0.20 is also shown, The experiments of Ovesen (1955) are from centri-
fuge tests. The experiments at small Bfield/Bmoael ratios are from con-~
ventional model footing tests. Although the results are tooc inconsistent
for meaningful regression analyses, they generally support the reduction
indicated by Graham and Pollock.

Figure 5,8 summarizes model footings tests for the effect of load
eccentricity. BAnalysis as a function of eccentricity ratio (E/B) indicates

a least squares second order polynomial with expéctation and variance:
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E[EY] = 1.0 - 3.50(E/B) + 3.03(E/B)2 (5.17)

i

U[EY] 0.0038 {5.18)

The regression was constrained to provide E[EY] = 1.0 for E/B = (0.

The tests indicate the effect of foundation shape. Strip footings
apparently vield lower values of EY than other geometries. Regressions
for L/B = 6 and L/B = 1 confirm a statistically significant difference.

A significant difference also exists between the regressions and the
Meyerhof (1963) solution. For E/B < 0.40, however, the absolute difference
between all expressions is less than 0.10. As a matter of practical con-
cern, Equations (5.14) and (5.18) satisfactorily describe the test results.
Figure 5.12 summarizes the analysis. Purkayastha and Char (1977) report

a statistical analysis indicating foundation size and friction angle have
no influence on EY' Their least squares estimate of EY is also shown in
Figure 5.8.

The experiments from several investigations of load inclination are
shown in Figure 5.9. The values of Saran, et al. (1971) and Muhs and
Weiss (1974) are consistently larger than other results. Despite this
difference the tests are considered one sample. Regression analysis indi-

cates a second order polynomial with expectation and variance:
ELL] = 1.0 - 2.41(8/%) + 1.36 w2 - (5.19)

U{I¥} = 0,0089 . {5.20)
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The regression was constrained to yield E[IY] = 1,0 for H/V'='O. No
significant improvement results for high order polynomials.

Theoreticai solutions suggest IY varies with friction angle apd
foundation shape. After reviewing experimental data and peiforming gimple
stability analyses, Andersen (1972) concludes IY is not a function pf
friction angle. Results for the few friction angles shown here concur with
this finding. A trend does appear with foundation shape. Strip footinés
indicate smaller values of Iy. The results of Meyerhof (1953) for L/B'=1
and L/B = 6 confirm a statistically significant_difference. Theée fesults,
however, are based on too few tests to yield a definitive relation. Accor-
dingly, Equations (5.19) and (5.20) are still suggested to describe the
test results. |

In Equation (5.6} the effects of eccentricity and inclination are
independent. This seems not to be the case in reality. Sixteen tests were
found in which eccentricity and inclination were varied simultaneously |
(Figure 5.10). The bearing capacity in these tests is aboﬁt 20% lower Ehan
that predicted using E[EY]E[IY]. However, the data are few. It should be
noted that this joint effect is not a statisticai covariance in the common
sense, as only a single bearing capacity can be meésured in any one test.

sufficient consistent data are not available to ewvaluate the effe&t
of foundation shape. Figure 5.11 presents several series of test resulfs.
Each entry represents the ratio of NY from several experiments for L/B % 6
and some other footing shape. The entry of DeBeer {(1970), for example .
represents thé ratio of N from 60 tests for L/B = 6 and L/B = 1. For
geometries other than L/B = 1 or L/B = 6, DeBeer (1370), Hansen (1970), %nd

Vesic (1973) recommend the arbitrary selection of a linear relation
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independent of friction angle of the form:
SY = 1.0 - m(B'/L) {5.21)

where SY = 1.0 for strip footings and m = 0.40. The parallel regressions
of NY for L/B = 1 and L/B = 6 support the independence of SY and friction
angle. Comparing the regressions yiélds m = 0.383. There is no evidence,
however, to indicate the relation is linear. Accordingly, for geometries
other than L/B = 1 and L/B = 6 the evaluation of bearing capacity must
still employ deterministic shape factors.

Few experimental results exist on the effect of foundation roughness.
Two series of tests by Ko and Davidson (1973} and Meyerhof (1955) are
inconsistent. Ko and Davidson show a 10% to 20% reduction and Meyerhof
a 40% to 50% reduction from § = $ to § = 0°. Concrete foundations,
however, are usually considered perfectly rough. This practice is sub-
stantiated by several series of tests (Meyerhof, 1961; and Potyondy, 1961)
indicating 8/§ for sand-concrete interfaces greater than 0.80. The effect
of roughness on bearing capacity for concrete foundations can therefore

be neglected.

Aggregation of Uncertainties

Consideration of theoretical solutions and model footing tests wel;
establishes Equations {(5.5) and (5.6) for the prediction of ultimate bearing
capacity. Statistical evaluation of the bearing capacity and correction
factors allows esﬁimates of the uncertainty in this prediction.

If the true values of 5, E/B, and H/B are known, the uncertainty in
bearing capacity is from model uncertainty alone. First-order second-

moment approximation yields
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R’

1
~yBS R )EIN E .
(v \ L El Y]E[EY] (1] - (5.22)

E[qV a]”

R

3 *y,a M0
39X, ax,
1 J

CIx. ,X.1 : (5.23)
i=1 j=1 13

‘19, ]
where x, represents the parameters NY' EY' and IT and the derivatives are

taken at the mean. Treating the parameters as unhcorrelated:

Il
lay ol = B 7o, | VIR (5.24)

For L/B = 6 and L/B = 1 the value of NY iz available and SY is not
necessary., Similarily, if the load is not eccentric or inclined, EY and
IY are comitted.

Although Equations (5,22) through (5,24) are for known parameters,
the expressions for U[Xi] (Egquations 5.14, 16, 16, 18, and 20} include
some parameter uncertainty (03, g , and 02

%' "E/B H/V

In other words, not all the uncertainty is due to the models. For laboratery

) from the laboratory tests.

experiments with carefully placed sand and measured loads, however, the

parameter uncertainty is agsumed small relative to the model uncertainties
2

a ,02 , and ci .

N E
¥ Y Y

In practice, the true values of $, E/B, and H/V are seldom known.
Uncertainty exists in 3 from spatial variations and from testing errors.
Uncertainties in E/B and H/V arise from errors in estimating the magnitude
and line of action of applied loads. The expressions for variance can be

modified to include parameter uncertainty in the form:
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' 2
V = -3. . - - — +
mY]L, - exp{; 3.292 + 0 346(m¢) + 0.030( ¢)}
{exp { 0.042 + o.oaocsﬁo} -1} © (5.25)
v = exp ~4. .346(m2) + O.
£NY]L/B=1 exp ~-4.128 + 0 346(m¢) + 0 030(0$ﬂ
{exp {0.086 + 0.030(059} -1} (5.26)
VIE.] = 0.0058 + [6.06(m_. ) - 3.50]2%¢° (5.27)
Y . _ " E/B ) E/B N
VIZ 1 = 0.0089 + {2.72(m. ) - 2.411%62 . (5.28)
v R /v H/V

Figures 5.12 and 5.13 illustrate the effect of parameter uncertainty on
the standard deviation (S[+«]) of NY, ET' and IY.
For a deterministic applied vertical stress,'qv 4’ @ Second moment

analysis of the factor of safety yields:

14

E[Fs} E[qv a]/qv'a

1

VIFs] U[qv a]/qv a2 (5.29)

If uncertainty exists in the applied load, the moments of the factor

of safety are evaluated from:

Fly ol Eloyed
Blay,ol  Elay, T

[qv,a} (5.30}

E[Fs] =
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2

Vig,Z 1 Elq, ) | :
e, q"'“4 Viq, | (5.31)

E‘cqv 2] thv 5!

V(FS)

assuming no correlation between qv,a and\qv'a.

The following examples illustrate the effects of uncértaiﬁty on the
bearing capacity factof of safety and pf&bability of failure.

Example

Consider the basic cases of a strip and_cifcular or square footing
subject to a vertical, concentric load. From Equations 5.22 and 5.23

the expected value and variance of the ultimate bearing capacity are:

1

Ela, 1= GyER) Emyl _ (5.32)
1 2 '

Vig, 1= GYBROVIN T (5.33)

For a deterministic applied stress the coefficient of variation of the

factor of safety is:

COV [FS] V%[NYI/E[NTI (5.34)

Covluyl {5.35)

Equaticns (5.13) and (5.15) for E[NY] and Equations (5.25) and (5.26) for
VIN 1 give the coefficients of variation for factor of safety shown in

Table 5.2.
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| Parameters | éF?SJmAFm&nFS’OhiFg

1/B v g COV{FS] _fﬁfloua pf-—-lo“2
6 0° 0.21 2.0 1.6

6 1° 0.28 2.8 2.0

6 20 0.44 5.3 3.0

5 3° 0.69 112.3 5.0

‘1 e 0.30 3.0 2.0

1 1° 0.36 4,0 2.4

1 2° 0.51 6.6 3;5

1 3° 0.74 14.5 _5.8

Table 5.8 -- Compariscn of COV(FS) and Py for a vertical concentric

funetion load.
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Probabilities of failure, given E[FSl, and COV[FS], are taken froma logNcormal

distribution on FS. This assumption reflects the logarithmic relation of
NY to E. The {fs]'s leading to pf = 10-4 and 10-? Are given for various
COVIFS]'s. However, the sensitivity of Pe to distribution assumptions is
shown in Figure 5.14. Increase in COV[FS] due to uncertainty in ¢ is
shown in column two.

One must be cautious in expressing uncertainty as prébability of
failure. Unlike FS, which is widely accepted as an index.of safety
rather than a statement of deterministic truth, pf is commonly interpreted
to be what it says, the probability of failure. This is not true: pf is
a conditional probability of failure, given the model being used and a

number of other strong assumptions. Thus, p_ too is only an index of

£
safety. It is a more descriptive index than FS since it includes variarice
in the prediction, but it is not a global probability of failure. For this

reason the realiability index, B, has been introduced, such that.

. ElFs] - 1.0
YViFs}

8 (5.36)}

The uncertainty in predicted bearing capacity increases as additional
correction factors are included. To illustrate the effects of inclination
and eccentricity consider the specific example of a strip footing with éhe
parameters: ¢ = 37°, y = 120pcf, B = 5', H/V = 0.3, E/B = 0.1, and
R = 0.43. The appropriate correction factors for no parameter uncertainty

are:
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E[NYl = 116 - WNTI = 579
EIE] = 0.68 Vie 1 = 0.0058
[ Y] [ T] 0.005
FII 1 = 0.40 VIT 1 = 0.0089

Y Y

From Eguations (5.22) and (5.23},

2.1 tsf (1.0 tsf)

0.5 tsf2 (0.12 tsfz)

E[qv’a]

V[qv a}
COV[qv o

0.34 {0.34)

where the parenthetical numbers correspond to the submerged condition.
The addition of moderate load inclination and eccentricity, increaces the

uncertainty by 60% (0.34/0.21).

If parameter uncertainty is included as 05 = 1°, o = (.01, and

E/B

o = 0.033, the expectation remains the same but the correction factor

B/V

variances increase to

v = 1040
{Nyl
v = 0.0066
[EY] |
Vi 1 = 0.0114
Y

and the ccoefficient of variation in the factor of safety increases from
0.34 to 0,40,

The uncértainty in FS also increasgs with uncertainty in the applied
loads. Moreover, uncertainty in loads necessitates reconsideration of the

definition of FS. For the previous conditions, failure surfaces as a
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function of applied horizontal (H) and vertical (V) load are shown in Figure
5.15. ‘hese are the.locii of qv,a = qv,a; bounding lines are + one
standard deviation. Again, 05 = 0.

For the expected loads of Eoint A the FS against failure by increase
of the vertical load isSu3; against failure by incfease of the horizontal
load, 1.4. These FS's leave little feeling for the actual uncertainty
shown here as contours of a hyﬁothesized joint distribution on H and V.

The uncertaihty is whether the realized loads will fall outside the failure
envelope (see Section 6.3.2}. _Given the comﬁutational difficulty of
integrating over the deqsity function of (H,V), relativity may be indexed
by the closest distance to the failure envelcpe measured in units of the
standard deviation (e.qg., Rackwitz, 1976). Here, H and V are taken inde-
pendent with the same wvariances, however exteﬁsion to correlated variables

with different variances is straight-forward. Including uncertainty in

both the loads and failure envelope, the reliability index becomes

/150242002

where 380 is the minimum distance from A to the failure envelope and 150
#nd 200 are the standard derivations of load and failure envelope, respec-
tively.

Conglusiong

An extention of the Terzaghi (1943) superposition method for beéring
capacity has been considered. Where pogsible, data have been analyzed with

statistical methods to draw conclusions on the uncertainty in the parameters
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of that methed. From this investigation the following conclusions are ad-
vanced.

(1) Theoreticél consideration of ultimate bearing capacity of
foundations on cohesionless soil leads to large variation among sclutions.
Variations by factors of two to four are typical. Proposals for NY apd IY
digplay greatest différences.

(2) Sufficient data exist to statistically analyze NY' IY' and EY'
However, at present there are imsufficient data to statistically analyze
effects of foundation size, shape, and roughness on bearing capacity. At
present levels of knowledge, substantial and unquantifiable uncertainty
derives from size effect.

(3) Primary uncertainty seems to derive from the relationships of
- NY to $ and IY to H/VT If $ can be estimated to within 4+ 2° (o$==1.0°),
incremental uncertainty in NT is small. For greater than about 1°,
incremental uncertainty in “Y rapidly becomes large, and uncertainty in 3
bacomes the controlling variable,

(4) For combined vertical and horizontal 16ads, a FS based on either

V or H individually may be an inadequate characterization of safety when

the lecads are uncertain,

5.2.2 Analytical Modeling of Stability

The procedure of the preceding section for predicting stability is
a partly theoretical, partly empirical apprcach based on the calibration
of a simple formulae to observed case histories. Another approach is purely
analytical. That is, the geometry of the foundation design and sedimentary

zoning is modelled and various poctential failure surfaces examined to identify the

weakest,
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Procedures for analyzing stability directly are usually ba%ed on
finite element techniques or on limiting equilibrium procedures. Beéause
FEM models are essentially addressed to deformatibns, they are considered
in Section 5.3.2. Attention here is focused on limiting equilibrium |
models, as for example the various methods of slices, in their application
to bearing capacity. While such techniques are uncommon in analyzing
small footings, they are increasingly used as foundation dimensions increase
{e.qg., Lauritzsen and Schjectre, 1976). The main focus here is to agsess
the level of uncertainty in predictions of bearing capacity made with
limiting equilibrium models and to éompare that with uncertainties uéing
Terzaghi's superposition method.

Most of the work on stability analysis using wvarious methods of
slices has been done for slope stability studies. The comparitive accuracy
of fhese methods has been discussed by Whitman and Baily (1967) among
other places. 1In thege methods the sliding mass of sediment is arbitrarily
divided into vertical slices and a force equilibrium taken on each. This
leads to forces along the surface ﬁf assumed sliding, which are vectorily
added to obtain a resisting force, and compared to the total driving force
to obtain a factor of safety. |

The problem with methods of slices, and the reason for there being
several such methods, i: that fhe physical system is indeterminant. Unless
deformation properties of the sediment are considered, assumptions must be
made to reduce the number.of unknowns, and different assumptions lead to
different factors of safety. Therefore, even if strength parameters for
the sediment are well-known, modeling errors are possibly substantial.
However, because the sediment properties are never well-known it is diffi-

cult to separate cut parameters and model error in case studies.
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Furthermore, sgdiment parameter estimates are often made';ith the mbdeling
procedure in mind and may change with changes of model.

Probabilistic énalysis of slice models have been made by a compéri»
tively small number of workers (e.g.; Yuceman and Tang, 1975; Matsuo 1976;
Tobutt and Richards, 1979). Primarily, these have treated soil proper-
ties as lumped parameﬁeré.rather.than stochastic varlables. Typical results
are given in Table 5.3. BAlonzo (1976) and Peintinger, et al. (1980) have
‘considered slice models with spatially variable soil properties. These
results are also given in the table.

Analyses wer e performed to see whether similar coefficients of
variation are obtained for the béaring capacity case. Thé geometry of
Figure 5.16 was assumed, and various trial failure surfaces investigated.

All of the failure surfaces begin as a triangular wedge beneath the footing
‘and extend through a 1og—§pira1 into a linear tangent which finally
intersects the midline. Soil friction angle (tang) was taken to be a’
stationary random field and c was assumed negligible. This is in fac£ not

a good assumption (e.g., Section 5.2.1), as ¢ reduces with increasing con-
fining pressure. Therefore} the friction angle shoﬁld be lower immediately
beneath the foundation than at other locations on the failure surface. This
could be analyzed using a trending mean model of spatial variation, but was
not. Reliability coefficients for the minimum reliabilit? failure surface
using the modified Bishop and Fellinegs methods are shown in Figure 5.17

as a function of autocorrelation length. Summing r, = 30m leads to rD/B = 0.3
and coefficients 6f variation of FS against stability failure on the order of
6 to 10%., Note, this uncertainty is due only to spatial parameter wvariation,

and not modeling uncertainty.
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Table 5.3 —— Variations in Calculated Factors of Safety Among Various
Method of Slices Procedures* o

Slope 3.5:1, Pore pressure factor u/ih=0

strength factor YH(tan#)/c ‘
0 2 5 8 20 50

Log Spiral - 1.00 1.00 .00 1.00 1.00 1.00
Ordinary Method 1.00 0.94 0,94 0.95 0,96 0.98
Rishop 1.00 .00 1.00 1.00 1.00 1.00
Force Equilibrium P
(Lowe and Karafiath) 1.09 1.02 1701 1.00 1.00 1.00
Janbu General formula 1.00 -- 1.00 =~ 1.00 1.00

Morgenstern-Price
and Spencer F(x)=C 1.00 1.90 1.00 1.00 1.00 1.00

Slope 3.5:1, Pore pressure factor u/Yh=0.6

strentth factor XH(tan%)/c

0 2 5 8 20 50
Log Spiral 1.00 1.00 1.00 11.00 1.00 1.00
Ordinary Method 1.00 0.91 0.75 0.68 0.57 0.50
Bishop 1.00 1.00 1.00 1.00 0.99 0.99
Force Equilibrium 1.09 1.03 1.02 1.01 1.00 1.00
Janbu 1.00 = -_ - - -
Morgenstern-Price 1.00 1.00 1.00 1.00 1.00 1.00

* From Duncan, J.M. and $.G. Wright (1980). Accuracy of equilibrium methods
of slope stability amalysis," Pngineering Geology, v16 (1,2):5-19.
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5.3 Deformation Modeling

Deformation of the foundation of a gravit§ structuré_is'induced both
by the static weight of thé.structure and by transientfléading- As ﬁhé
latter are dynamic, the analisis of deformgtion uﬂdéf them is more involwved
than under the static component itself. This section considers defqrmations
under static loads, and the influence:of lateral (e.g:, wave) loads én static
deformation.

Analyses of deformation are made either by simple semi theoretical
procedures calibrated by field data, or by numerical mpdelé based on elastic
or elastcplastic theory. The former have the advantage of field verifica-
tion, but the disadvantage of requiring extrapoclation outside tﬂe doqain of
calibration. The latter have the advantage of tailoring analyses directly
to the case at hand, but the disadvantage of being poorly verified bi
case histories. These two approaches are discussed in Sections 5.3.1 and
5.3.2, respectively. |

Under gravity (and cyclic) loads a structure induces deformations in
the underlying sediment mass which manifest as total and differential settle-
ments of the foundation (Figure 5.18). Total settlement means either the
vertical downward movement at a point on the foundation (e.g., Gl or ﬁz)r
or the averaged vertical displacement across a foundation. For flexiﬁle
foundations this movement may vary non-uniformly across the foundation area,
whereas for a perfectly rigid foundation the movement must define a plane.
Differential settlement means either the ratio of settlement differences
to their separation (e.g., |61-62|/ﬂ) or the angle induced by the settlement
(e.g., arctan (]51-62[/2). In general, differential settlement is the

controling criterion of structural performance, although in deterministic
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Figure 5.18 == Illustration of total and differential
Settlement for rigid foundation.
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modeling differential settlement is difficult to predict. Thus, total
settlement is often used as a surrogate ﬁriterion. This is not necessarily
the case with probabilistic modeling. When structural connections such as
piping or anchorages are involved, total settlememt may become a design
consideration in its own right,

The Georges Bank site, as discussed earlier, consists of sands and
gravelly sands to at least 100m, with minor inclusiops of clays and peats.
Therefore, delayed consolidation settlement under static loads is not
considered here. The only settlements considered are immediate, and assume
rapid, complete drainage. The issue of inclusions in an otherwise homo-

geneous mass are considered in Section 5,3.3.

5.3.1 Simple Settlement Formulae for Sands

A number of settlement formulae for the settlement of foundation on
sands have been proposed in the literature. Primarilj these formuilae are
based on variants of elastic fheory and have been calibrated to observations
on spread footings and model or plate-load tests. The question of extra-
polating such results to exceedingly large mat-type footings is at issue,
and to date has not been adequately dealt with through empirical verifica-
tion. In principle, if not in fact, the arguments 5ehind most of the
settlement formulae are independent of scale.

Taxonomy of Simple Settlement Formulae

Settlement formulae for foundations on sand can be roughly grouped
into five claéses: Those based on 1) case penetration resistance, 2)
standard penetration blow-counts, 3) laboratory tests, 4) field tests, énd
5) elastic theory. This taxoncmy is somewhat artificial, but useful.

Methods based on finite element analysis or other numerical models are
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considered separately. The review and evaluation of these formulae
included those 1isted.in Table 5.4,

The purpose of the analysis was to establish the magnitude of model-
ing errﬁr, both bias and randdm, asscciated with common formulae. Tﬁe
procedure for doing so was straightforward: empirical data were collected
for a number cf case studies and relative predictions and actual perfor-
mances compared. For those formulae for which sufficient data were avail-
able, regression analyses were performed. The results are presented as
expected regression lines {least square regressiohs in a classical
sense), and as correlations among.modeling errors. Joint regressions of
model predictions on observed.behavior are presented for use in the joint
likelihood formulation of model uncertainty of Section 5.1.

-In using empirical relationships to asses model uncertainty, both
inherent and (regression) parameter uncertainty must be considered. |

The expected regression line represents the model bias, while varia-
tion about the regression line represents random error. Because the number
of data in many cases is insufficient to precisely establish the regression
lihe, uncertainty in the régression parameters must be integrated out to
form the broader "predictive" distribution.

It must be emphasized that the present evaluations are based on
regression analyses of available data, nothing more. They therefore suffer
all the limitations of regression analysis and must be viewed as such. More
carefully instrumented case sfudies or more extensive data might change
numerical conclusions. Nevertheless, given the present data, these re-
sults are the best that can be objectively inferred from the data alone.

The application of these results to new cases rests on an assumption that
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Table 5.4 -- Simplé Settlement Formulae Considered in Data Evaluation

: Uvi Agv-'-ovi
Buisman-DeBeer (1967) p = L{1.535[ (= )Az log, . (——)]
1 - 9 10 vi -
Elastic Theory p = PBI/M
k k, -k
Egorov (1957) p=2aF I —3~—§--—1——1~
: i=1 i
Meyerhof (1965) pldn.) = chd %%-fé%% 2
2B I 2B I
Schmertmann (1970) p = AP J EE S CICZAP z EE'AZ
o s o s
Terzaghl and Pack (1948) p(in.) = Cde‘%§ [§§%]2
a half-width of footing
B footing dimension
C1 correction factor for embedment
02 correction factor for creep
Cd correction factor for depth
C correction factor for groundwater
W
ES subgrade modulusg
Iz influence factor
i layer number
ki coefficlent dependent on geometry
M modulus of compressibility
N blow count
P average applied bearing pressure
9, cone resistance
o] settlement
0, vertical stress

"eorrected™ means that blow counts or other in situ measurements have been
corrected for overburden effect.
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the data set on which they are based is homogeneous with the cases to which
they will be applied., In other words, that nature is uniform. This is
never precisely the égse, but all engineering is based on similar faith.

In performing the analyses it was assumed that soil properties were
well-known.  That is, that errors in penetration resistance, elastic param-
eters, and the like were negligible in comparison to model uncertainties.
In many but far from all of the case studies this may be true. &everthe-
less, part of the error atﬁributed here to model uncertainty comes in fact
from (geotechnical) parameter uﬁceftainty. Then, if parameter uncertainty
is subsequently added to this model uncertainty the result is conservative.

The magnitude of this conservatism has not been estimated.

Procedure for Analyses and Results

Data on case studies available in the open literature were collected,
and settlement predictions using each of the 8 formulae made. In total these
comprised 48 cases of observed building settlements, and 48 load tests.
Observed settlements and respective predictions of the formulae are given
in Lee and Baecher (1979). In cases for which insufficient info#mation
on geotechnical parameters were available to allow prediction with a par-
ticular formula, no prediction was made.

Univariate regression of predicted on observed settlement (i.e., to
infer the marginal likelihcod function of Section 5.1) was made for each
formula, shown by the example of Figure 5.19. Results are given in
Table 5.5. Data on cther methods were too few to allow reaschable
regression analysés.

Assuming predictions and observations to be jointly Normal, co-
efficients for the regression of observed on predicted settlement were also

obtained. These are shown in Table 5.6.
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D load test results on Py
plate at 25 tsm pressure.
e data from Schmertmann,
[ 4
&
. back-calculated

case histories.

6 8 10
OBSERVED SETTLEMENT cm

Figure 5,19 -- Relation between observed and predicted
total settlement on sand, using Schmertmann's method.
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Table 5.6 —- Regression results for simple footing settlement
with observed settlement as dependent variable.

Formula a b e2 n
Sclmertmann '—0;28- 1.05 2.00 80
Buisman-DeBeer 0.13 0.56 2 45 90
Bulsman—-DeBeer -0.02 1.13 5.01 42
(corrected) ' '

Terzaghi and 0.16 0.32 0.03 48

Peck (c)

Meyerhof 0.842 0.37 8.00 87
Meyerhof (c) 0.08 0.59 0.25 69
Elastic Theory 0.00 1.01 1.20 49
Egorov 0.19 0.71 3.01 11

vy=a+bxt+e

[These estimates are made Iindirectly, using the inverse regression
of predicted on observed settlement. ]
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Correlations among model uncertainties were examined from the inferred

~ joint likelihood function. The regression model for the joint likelihood
= + .3
x=8, Y By te ., | (5.37)

where x is the vector of model predictions, y the observation, and Ei and

ﬁg regression'parameters, has the multiNormal error vector
e~ Mi(o,I) | SR (5.38)

where % is the covariance matrix. 'Were.the models conditionally un-
cq;reléted, the components of e would be independent, and I diagonal.
However; L_%s_not diagonal

Pairwiée correlations were analyzed to obtain a posterior density
function on the correlation coefficient, p, using Jeffrey's (1961) approx-
imation,

(v=2)/2

£'(p|data) « (1-p7) © (5.39)

(1-pr) (V1721 1

where r is the sample correlationxcoefficient and v the degrees of free-

dom (v=k-2). A typical result is shown in Figure 5.20 for the high corxela-
tion between predictions of elastic theory and the Buisman ~DeBeer
{uncorrected) formulae; similarly in Figure 5.21 for the low correlation
between the Buisman-DeBeer (corrected} and Schmertman methods. Most probable
pairwise conditional correlations for all 8 models are given in Table 5.1.

These are the modes of f'(b!data).
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-1 — 3 : o

Figure 5.20 -- Empirical conditional cor-
relation between predictions of elastic
theory and the Buisman-DeBeer (uncorrected)
method.

by - 5 . T

Figure 5.21 -- Empirical conditional cor-
relations between predictions of Buismann-
DeBeer {corrected) and Meyerhof Methods.
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Differential Settlements

Within detemministic analysis differential settlements cannot be
estimated directly sinée_sediment profiles are assumed (zonally) uniform
and all settlements are predicted to be the same. Therefore; following
Skempton and MacDonald {1956) predictions of differential_settlement are
usually estimated to be some fraction of total Settlemént.
| Skempton and Hacﬁonald analyzed 98 case histories to draw conclusions
on the magnitude of differential settlements and on the consequences.
Grant, Christian, and Vanmarke {1972) introduced another 95 cases. In the
present wofk another 26 cases were identified. The relationship between
maximum differential settlement and maximum settlement is shown in Figure
5.22, These are similér to those relationships reported earlier.

Conclusions on The Accuracy of Simple Settlement Formulae

Neglecting the problem of extrapolating from footings to large mats
or other large foundations, the uncertainty in predictions of total settle-
ment by the methods analyzed would appear to have a coefficient of wvariation
of 100% or more. Thig does not include geotechnical parameter uncertainty,
and is corrected for systemétic bias. Repeated analysis with more than
one method does not appreciably feduce this uncertainty due to high correzla-

tions among models.

5.3.2 Nuﬁerical Modeling of Settlement

An alternative to semi empirical settlement formulae is large numerical
modeling. This type’ of modeling, based primarily on finite element ﬁech-
niques, has to occupy a central role in the analysis of offshore gravity
structures (e.g., Zienkiewitz, et al., 1979). The reasons are clear.

Analyses can be tailored to the particular design concept and geometry,
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Figure 5.22 —— Additional data showing corrvelation between

differential and total settlement. Open squares, foundations
on sand; darkened squares, foundations on fill.
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complicated cpnstitutive relations can be incorporated, and a broad variety
of loadiﬁg conditions analyzed. There are also drawbacks: Empirical
calibration or verification is difficult, parameter estimates are néeded
that may be difficult-to obtain, and as many or more interrelated param-
eter estimétes are sometimes needed as there are data.

Essentially all present uses of finite element techniques are deter-~
ministic. In conjunction with the lack of direct calibration data, this
means that uncertainties in predictions of foundation.performance are dif-
ficult to quantify. Therefore, a finite element tecﬁnique was developed
for incorporating stochastic variation of sediment properties and leading
to second moment descgriptions of deformations.

Previous Analytical Studies of Settlement Uncertainty

The literature contains several probabilistic models for the pfedic—
tion of foundation deformations. These works are identifiable within
three main groups:

(1) Models for estimating settlement on sand from standard pene-

tration tests (Wu & Kraft (1967), Hilldale (1971), and Ramos
{1976)).
(2) Models for estimating the consolidation settlement of clay
(Resendiz & Herrera (1970}, and Diaz & Vanmarcke (1974)).
(3) Finite element models for deformations of a discretized con-
tinuum {(Su, et al. (196%), Cornell {1971), and Cambou“(1975)).
Deterministic settlement analyses for sand typically use the standard
penetration test And empirical models. Probabilistic methods employ similar

concepts varying only in quantification of parameter uncertainty.
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Hilldale {1971) develops a probabiliétic model.fﬁ; total and.differ—
ential settlement from approximate second moment anéiyses. Total settle-
ment is the summation of individual layer séttlements from anlelas£ic dis-
tribution of stresses. The spatial correlation of lafer compreééibilities
employs exponential decay autoborrelation functiohs. For.a verti§a1
stress increment Eﬁ.' layer thickness Zi, and coefficient of.volume change
MV‘ for the ith lay;r, Hilldale gives the moments of total éettlement as:

i : : :

n .
Elo) = To, 3z E[Mv.] (5.40)
i=1 i i
n n .
Vipd = & T o o 2.2, /Wm 1VM 1o (5.41)
i=1 j=1 Vi Y3 ' Vi Py Mvi'mvj -

Although developed for the standard penetration test, estimates of the
mean, variance, and covariance of compressibility_using any measurement
technigue could be used.

Ramos (1976} presents a probabilistic version of the empirical
Terzaghi and Peck (1967) settlément equation to include uncertainties in
the model, penetration resistance, and induced load. Using a multivariate
approximation and assuming the variables are mutually independent, the

expectation and coefficient of variation for total settlement are given as:

E[P] = K* E[qv aIEIE] / E[Navgl (5.42)

Jbovxqv a12 + COVIF)? + COU[Nan]Z (5.43)

1

covir]
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where: K* = deterministic coefficient for effects of water table and
embedment

applied vertical stress

&

N = average standard penetration test resistance over B below

the footing

F = model bias correction factor (E[F] = 0.28, COV[F] = 0.4)

wu and Kraft (1967) employ an earlier Terzaghi and Peck (1948) empiri-
cal correlation for the ldad necessary to causéiamBXimum settlement of one
inch. Based on'limited evidence, penctration resistance and medel un-
certainty are assumed to be Normally distributed. The distribution of
lpad necessary.for one inch of settlement is then derived.

.Resendiz and Herrera (1970} and Diaz and Vénmarcke {1974) develop
second ﬁoment probabilistic models for consolidation settlement of ciay.
Thesg models follow traditional deterministic settlement methods using a
layered soil profile and comprassibility parameters from oedometer tests.
Resendiz and Herrera, however, neglect the spatial correlation of compress-
ibility; Moments for total settlement are similar +to those given by

Hilldale (1971), except Py M- 0 for all i # 4. Depending on auto-
r
v v

correlation distance and la%er tﬁicknesseS, this assumption leads to under-
estimates of the settlement variance: A more comprehensive treatment is
given by Diaz and Vanmarcke. -This model yields first order approximatiors
with consideration of the spatial correlation of sevefal soil properties
(avm’ CR, RR) and soil-structure interaction. The model is, of course,

more difficult to apply than those treating only compressibility as a random

varlable.
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The application of probabilistic technigues to finite element models
has received some attention. Cornell (1971) describes the basic method
of applying sec&nd moment analyses to fiﬁité élemeht.models. Cambou {1375)
also discusses second moment analyses for finite element models and illu-
strates the effects of uncértainty in modulus and Poisson's ratib on
stress and strain for a simple four element mesh. 1In particular, Cambou
concludes the uncertainty in stress and strain'cén exceed the uncertainty
in so0il parameters. Uncertainty in vertical displacement, however, appears
relatively insensitive go Poisson's ratio.

Su, et al. (1969) present a linear elastic finite element analysis.
of stresses around an underground opening with a stochastic simulation
of rock properties, Modulus and Poisson's ratio are randomly generated for
each element from normal distributions. Although unrelated to settlement
problems, the results éuggest an important conclusion applicable to approxi-
mate second moment analyses. For coefficients of variation as large as
0.20, the simulations show that stresses derived from expected values of
uncertain parameters are not significantly different (statistiéally)

from the expected stress from simulation:
Efto {6}1 = o(EL{8}]) (5.44)

where {8} is a vector of random variables containing modulus and Poisson's

ratio. The results also indicate uncertainty in the stresses can exceed

uncertainty in the rock properties.
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Formulation of Settlement Models

The review of previoﬁs studies suggests probabilistic models are
essentially extensioﬁs of deterministic procedures. The same_design models
are used, but the parameters are treated as random variables. Consideration
of uncertainty is usuwally limited to inherent spatial variability.and
measurement error. Although some attempts have been made to include modcl
uncertainty (Ramos, 1976 ), it is usually neglected.

Except for the finité element models, current methods are one dimen-
sional. Equations expressing the mean and variance are only a function of
properﬁies below the point of ' interest. In other words, the equations of
uncertainty are integrated over a line. In a two-dimensicnal fqrmulation,
moments are cobtained by integration over the two-dimensional profile
(Figure 5.23). Current probabilistic models use a determiﬁistic distri-
bution of stresses. The stress increment is typically calculated from
elastiec gsolutions for a homogeneous profile. Finite element models distri-
bute stresses as a function of the réndom s0il properties.

Soil properties for design are usually estimated froﬁ a number of
laboratory and field tests. These.tests provide a meén and variance for
so0il properties in each layer in a one-dimensionél model or each element
in a two-dimensional model.

Specimen dimensions are much smaller than the correlafion distance of
most properties. As a result, properties within a specimen are highly
correlated. The dispersion of soil properties among specimens, therefore,
is approximately the same as the dispersion of soil properties among

points.
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Settlement models discretiie the soil profile into volumes much larger
than the specimen dimensions. For any soil volume, thereforg, spatial_
moments rather tﬁan point moments are necessary. Coﬁsider sbme soil
property, u, to be a continuous function varying ﬁith dépth as describea

by a one-dimensional (line) stochastic process. As shown by Papoulis {1963},

the spatial moments are:

Ef<u>,]1 = E[u,] : (5.45)
1 1 ] .
1 b b
Vi<u>.] = —<— [f [ Clu, ,u.]d2. 4g. {5.46)
i 2 i’ i i i
L . a a
1
1 b d
Cl<uw>. ,<u>,] = —— [ fCfu.,u.}d2, dt. {5.47)
i 3j LiL ac 1] i 3 -

Instead of modeling soil properties as a continuous process,.Diaz and
Vanmarcke (1974) present a convenient discritized form of Equations 5.45
through 5.47. For a knoﬁn point (specimen) mean E[ui], variance V[ui].
and correlation coefficient p u’ ?he spatial moments for homogeneous

i
layers of constant thickness are:

El<u>.] = Efu,) (5.48)

1 1
1 n n

Vi<u», ] = Viu,1 | 2 I I pu, ,u, ' {5.49)

1 % a1b=1 *a '
: e |1 n =n

Cl<u>, ,<u>.] = vV[u, IV[u.1] 2 £ T pu, ,u, {5.50

oA o3 [® a1l ta

where n is the number of specimen size sublayers in each layer. Equation

5.49 shows the spatial variance to be equivalent to the product of the
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point variance and a correlation coefficient correction factor. Diaz and

. X \ 2
Vanmarcke (1974} treat this factor as a variance reduction factor, Tu:

2
Vi<u>,] = Viu,Ir {5.51)
i
ox
COVi<u> ] = COV[u.1T o (5.52)
i i7 7y, :
i
For perfectly correlated properties, Du a - 1.0 for all a and b and
. = r = .
2 . : : i i _ _
Fu = 1.0. For perfectly uncorrelated prgpergies, Du a - 0.0 for all
. s, S

2 *
a #b and Tu = 1/n. Actual soil properties have 1aye% variances between

these extremes:
. < : < :
U[ui]/n = V[<U>i] = U[ui] _ {5.53)

The variance reduction factor is a function of the specimen thickness, layer
thickness, and correlation coefficient. 8imilarily, spatial covariance can

be written as:

C[<u>i,<u>j] = V[ui]U[ujIQ’i‘.' _ | ) (5.54)
1,]
where ?j is a covariance reductien factor modifying the Point covariance to
a spatial covariance. The covariance reduction factor is a function of the
specimen thickness, layer thiékness, correlation coefficient, and distance_
between volumes iﬁ layers i and j.
Two dimensional finite element models require evaluation of spatial

moments for various element geometries and configurations. If the point
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(specimen) mean, variance, and correlation coefficient are known for some
property u, the two-dimensional spatial mean and variance for homogeneous

aelements are:

E[<u>i] E(ui] {5.55)

Vi<u>,] V[u.]I‘2 {(5.56)
X 1 u

where Pﬁ is now taken as a two~dimensional.vafiance reduction factor.
Figure 5.23 illustrates the variance reducfion factor for a typical.
triangular element. Both isbtropic and anisotropic autocorrelation show
increasing Fi with increasing b/a for a given ratio of Rb/x or Rv/x. This
trend results since an increase in b/a for a given element dimension X
increases the correlation between point within the element. As the cor-
relation increases, Fi approaches ¢ne,

Similarily, two-dimensional covariance reduction factors are shown
in Figure 5.24. A typical element configuration is shown. The simulations
are also compared with two approximations. The approximations exp(-D/Ro}
or exp(-D'/Rv) use point variances and element centroids to determine"¢i.
The second approximation, Fﬁexp(-D/Ro) or Piexp(-D!/Rv), uses spatial
variances and element centroids. The degree of approximation varies with
how well the correlation between centroids represents the correlation
between all points within the elements. The distribution of peints around
the centroid, therefore, is as important as the distance between centroids.
As the correlation within an element increases or as the correlation betwaen
elements decreasges the approximation improves. “

Two=-Dimensional Settlement Mode{

Modeling settlement by a linear elastic two-dimensional finite elemant
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model requires solution of the system of equations (Zienkiewicz (1971})):
[Kl{p} = {P} (5.57)
Equation 5.57 relates the vector of unknown displacements {p} to a vector

of forces {p} through the global stiffness matrix [K]. The expectation of

the displacement vector from a first order approximation is:

Eflp}l = ELKI™Y{p}  (5.58)

First order approximations foxr the variance and covariance require
partial differentiation of the Qisplacement vector with respect to modulus.

Differentiating Equation 5.57 yields:

afpl alK] _ a{rp}
(K] a<m§_ + <M, te} a<u§_ (5.59)

i

The force vector {P} is independent of modulus reducing Equation 5.59 to:

alp}  _ 3[K) ' . .
(K] B<M§- = = Ezﬁ%, {p} _ {5.60}

Rewriting Equation 5.60 for B{ﬂ}/3<M§_ gives:

3{p}
<M

- -t g%g% fp}  (5.61)
1 |

=

Substituting the terms [K]_l{p} for {p} yields:

e g 1.4 N Y (5.62)
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The solution of Equation 5.62 results in a n x m matrix of differen-

tials of the form:

— -
apl ‘ﬁ:"‘ B%- L ) Bﬁ
I<M> A<M> J<M> H<M>
1 2 3 m
9 8 9
—p?-' —‘iz“ i (5.63)
a<M> a<M> J<M>
. 1 2 m
3%1 an ap
B 3<M>1 3<M>2 . 3<M>m |

where n is the number of displacements and m is the number of elements
within the finite element mesh. With this matrix of differentials the
n x n covariance matrix for total settlement is obtained from the first

order approximation:

. ' m m 3[:]{ . Bpg
C{pk,pgl * L jél 3, '5?1513; C[<M>i,<M>_j]
Efar, ] Eram>,]

(5.64)

The major difference between one and two-dimensional models is apparent.
One-dimensional settlement is a function of vertical stress, layer thick-
ness, and soil properties along a line below points of interest. Two-
dimensional covariance is a function of the stress, soil properties

and size of each element in the s0il profile through Bpk/a<M>i.
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Second moment finite element analysis extends deterministic scolutions
to yi=ld expressions of uncertainty. Indeed, for a first order approxi-
mation of Ef{p}!, no additional computation is necessary. The global
stiffness matrix only requires evaluation at the mean of modulus for each
element. Formulation of the differential matrix and covariance matrix,
however, introduce considerable computations. Treating Poisson's ratio
deterministically simplifies these calculations. The terms of the qlébal
gstiffness matrix reduce to the form:

X

koo = ik My 0By (5-65)

ks + X ' : :
¥ z R
2> - i85 (5.66)
where k is a term in the global stiffness matrix [K],'x ig fhe.number

s,t

of elements contributing to ks . and oy and Bi are coefficients from

£
element dimensions and Poisson's ratio.

Assuming Poisson's ratio deterministic results in an underestimate
of uncertainty. As shown by Cambou (1975), however, the uncertainty in
settlement is relatively insensitive to Poisson's ratio. BSpecifically,
for a deterministic modulus and random Polsson's ratio, Cambou indicates
COVIp1/COVIp] = 0.15 and for a randdm modulus and deterministic Poisson's
ratio COV{p1/COV[M] = 0.80. Although these results are particular to
Cambou's model, the relative insensitivity of settlement to Poisson's ratio

is apparent. Alternatively, similar results can be qualitatively shown

from a second moment analysis of elastic solutions for settlement.
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Expressing vertical settlement in the typical form (Poulos and Davis

{1974)) :

{1 - v2)

p = M (5.67)

and taking a first order approximation for variance yields the expression:

2 4
Vipl = £ =Y coypg? + SELVLT cpppy)2

Emi2 2
4(1 - v9) 2
+ ——-;—-E{_\J] Covem) COVIV o (5.68)
E[M) v

Assuming pv = 1.0 for maximum uncertainty and using v = 0.33 for
r

M

illustration, Equation 5.68 becomes:
[p) = [(0.90 covmjz + (0.05) COV[v]?
+ (0.40)COV[M]COV[\J]:[. _ (5.69)
This result, although qualitative, indicates that uncertainty in settle-

ment is relatively insensitive to uncertainty in Poisson's ratio.

Differential Settlement

For this study the definition of differential settlement is (Figure

5.18):

Ap = o, - P ' (5.70)
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To separate the symmetric settlement component from differential
settlement it is convenient to express Ap for nodes i = 1 and j = 5
{Figure 5,25),

Since differential settlement is an absolute value, distribution

assumptions are necessary. Taken the settlement difference,

ADR =p, =P (5.71)

to be Apg ™ N(U.VEApRJL the moments of Ap bhecome

Elap) = v2/7 v[EEET | (5.72)
Viap) = (1 - (2/m) Vidp,] (5.73)

Analysis of settlement Uncextainty

This section presents a comparison of one- and two-dimensional
models for a uniform vertical strip load. Consideration focuses on two
s0il profiles:

{1) Homogeneous, constant mean modulﬁs with depth
(2) Nonhomogeneous, modulus increcasing as the square root
of depth
In both cases Poisson'’s ratioc is deterministic. A value of 0.33, typical
of many sands, is assumed. TFor each profile the models are compared for:
{1) the momenﬁs of total settlement, (2) correlation of total settlemant,
and {3) moments of.differential settlement. The effects of isotropic

and anisotropic autocorrelation are considered for two autocorrelation

models.
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Profile boundary conditions and first order approximations to the
expected value of settlement are shown in Figures 5.25 and 5.26. The
coarse mesh and fight boundary dimensions minimige cost and computation
requirements. Elastic solutions indicate the stress on anyjboundary is
X 15% of the applied load. In this regard, the finite layer apprﬁximates
a half space. The base is a fixed boundary. Lateral Eoundaries provide
horizontal restraint but allow vertical_displaﬁement. The one-dimensional
model uses the same base depth to facilitate comparison{. For both.
profiles the one-dimensional model yields expected values of settlement
which are 20% to 30% larger than those from the finité.element model.
Comparison of the finite element model with half—space and finite layer
golutions shows good agreetient.

Comparisons of one- and two-dimensional models for a homogeneous soil
profile are shown in Pigure 5.27 through 5.29. Results are ﬁorm&iized
to the coefficient of variation COV[M], autocorrelation distanc;s Ro or
R, and the foundation width B. Element covariance is approximated by
applying the autocorrelation function to element or laygr céntroidé.
Autocorrelation functions are shown on.the figures.

Figure 5.27 presents a comparison of COV[M] and COVIp]l for isotropic
autocorrelation structure. Several characteristics emargé:

(1) For R /B =0 and R/B > =, COVpl = 0 and COVIp) » COVIM).

These correspond to perfectly uncorrelated and cérrelated
values of modulus.

{2) Fo¥ other values of Rb/B' COVip] is a function of the model.

The one-dimensional model consistently yields larger values

than the two-dimensiohal model.
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(3) The COV[pl's for different points on the foundation are not

the same. The maximum difference is 10% and varies with Rb/B'
This’difference is neglected.

Correlation matrices for five points along the foqndation are shown
in Figure 5.28. 1In each case, two-dimensional correlation is much larger
than one-dimensional correlatioﬁ.

Differential settlement is shown in Figure 5.29. Larger variance
and smaller correlation in the one-dimensional model result in larger
differential settlement. Both models display the interesting result of a
unique value of Rb which results in the largest differential settlement.
This "worst" autocorrelation distance occurs for RO/B of 0.75 to 1.0, For
Rb/B = 0, perfectly uncorrelated mpduli, or RO/B-+w, perfectly correlated
- moduli, differential settlement is zero.

Anisotropic autocorrelation effects on differential settlement for
Rh = 10Rv are shown 1n Figure 5.30. Figure 5.31 shows the m%nor effect of
changing the autocorrelation model.

Comparisong of one- and two-dimensional models for the nonhomogeneous
profile are shown in Figqures 5.32. Analyses are identical to the homogen-
eous scil profile.

While similar characteristics exist, three specific differences emerge.
The nonhomogeneous profile yields larger COV{p] for the same COVI[M]. The
-maximum difference is 25%. Settlement correlation is alsc smaller in the
nonhomogeneous profile, iarger variance and smaller correlation produce
a larger differential settlement influence factor. The actual moments of

differential settlement depend on the value of modulus. For E[M] = E[Mo],
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the nonhomogeneous profile différential settlement is greater.

The reason for these differences is apparent. Covariance depends
more on soil glementg near the foundation than distant elements. Small
values of modulus near the foundation, therefore, increase covariance
proportionally md}e than the larger distant values of modulus decrease
covariance, Thé net result is.an increase of uncertainty in total settle-
ment and larger diffe;ential settlement.

Conclusions from Stochastic Analysis

From the two—dimenéional analysis of stochastic variability, the
COV of total settlement for appropriate magnitudes of the autocorrelation
distance (taken as 30m compared to a foundation diametqr of 100m, yielding
rO/B.= 0;30).would appear in the range of.30% of the ﬁoint_COV of sediment
properties. The expected differential settlement as a ratio of total
settlement would appear to be about 15% of.the COV of sediment properties,
and the COV of Ap about 75%. Anisotropic correlation lowers these COV's

somewhat, and nonhomogeneous moduli (increasing with depth) increases them.

5.3.3 Effect of Nonhomogeneities.on Settlément

The George's Bank sité may contain clay or peat inclusions deposited
during glacial periods, and given the inefficiencies of geotechnical
exploration to detect such inclusions theif effect on settlement uncertain-
ties were considered. The model for doing so is somewhat crude, but leads
to a first approximation of the effect. More refined models were consider-
ed unjustified in a generic aﬁalysis of thé sort presented here.

Figure 5.33.shows the posterior probability of undetected anomalies

existing as a function of the search efficacy of site investigation. Let
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thisg probability be P Assumlng the spateal density of such 1nclu51ons

to be low, the prcobability of more than one underlying the site was assumed
to be zero, The size of such inclusions, based on accouetic profiles

may be about 10m in breadth and as a firef cut the size was essumed fixed
at this breadth. The location within the sediment proflle was assumed |
random and unformly distributed (Figure 5 34)

Taking the cross section of the lnclu91on'to be approxemately elllp—
tical, the dlfferentlal settlement of the foundation given an 1nclu51on
centered at (X ¢ 2 ) is shown in the flgure; Propagating unCertalnty 1#
(xo, Zo) through the analysis yields the:estimate of inclusien—induced |
differential settlement shown in Figure 5, 35. |

Relaxing the assumption of known breadth, inclusion size could be
considered uncertain with the same mean. Given lack of information on

the distribution of inclusion sizes, the one parameter exponential distri-

bution

£(b) = - exp(-b/b_) (5.74)
O

was adopted. Here the mean breadth, bé, was assumed to equal 10m. This
is an arbitrary assumption the primary purpose of which was to test the
sensitivity of differential settlement predictions to uncertainty in
inclusion size. The result is also shown in Figure 5.35. Obviously, any
increase in input uncertainty.increases the predictive uncertainty, but
the prediction seems nof overly sensitive to such changes. The main
effect remains the probability that an inclusion exists, and this must be
estimated from analysis of the site investigation program, as discussed in

Section 4.3.5.



NSTITY

D E

PROBABILTITY

- 236 -

-\\ AN
\\
0 30 40m
RADIUS
Fﬂgure 5.38a -— Posterior probability

distribution of anomaly dimension for
combined borings and geophysics program.
Curve 1: ltkelithood function for borings;
2: litkelihood function for geophysics on
o0m spacings; 3: likelihood function

of combined exploration; 4: prior pdf;

&: posterior pdf.



- 237 -

no size uncertainty

exponential size pdf

—_—

6] 2 4 6 8 10 12%
DIFFERENTIAL SETTLEMENT

Figure 5.36 —-- Predicted differential settlement

due to soft inclusions in bottom sediments. Spike

at 0% corregponds to probability that no inclusion

exists after exploration.



- 238 -

5.4 Dynamic Loading and Sediment Behavior

Most analyses in the present work, as in practice, consider psuedo-
static loading ﬁnder wave action. The reality is, of course, different,
As a wave moves past the structure it first exerts force in the direction
it is moving, and as it passes the structure it exerts force in the revérse
direction., Thus, during a storm the structure is subject to many hours ‘of
repeated loading, comprising in total perhaps a thousand or mo?e cycles.
The sediments beneath the structure experience cyclic stress reversals 5f
about equal magnitudes during this'period, and may behave differently |
than under static loading. ’

From extensive work in earthguake engineering it is well_kﬁown that
sands, particularly uniform fine sands, consolidate under cyclic 1oadin§.
If the period of the cycles is short or if the seil has low permeabilitf,
this consclidation leads to an increase in pore water pressure which
does not dissipate. Effective stresses drop correspondingly, and if the
loading continues, eventually the sand 1iquifies. In the case of off-
shore structures, however, shear failures or large éeformations will ocdur
before liquifaction, when the effective étresses are sufficiently reduced
and strength correspondingly decreased.

while the phenomenon of pore pressure build up under cyclic loadiﬁg
is well recognized, procedures for dealing with it in design and analysis
are not widely agreed upon (e.g., Seed, 1979; Peck, 1979). Experimentél
results are sensifive to procedural effects, and the primary analytical
models are baged on simplified assumptions of linear superposition (Bjerrum,

1973) . Correlating laboratory measurements to field conditions is made
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difficult by the importance of soil fabric to cyclic behavior (Casagrﬁnde,
1971}, the disturbance introduced in sampling from sand strata, and tﬁe
imprecision of index.properties such as relative density (Tavernas, et al.,
1972) . Reliability modeling will not significantly improve this situation,
as the central problems are ones of mechanistic understanding and not
deductive reasoning or quantification of nebulous uncertainties.

The present work has dealt with reliability under dynamic 1oadipg
only to the extent of incorporating uncertainties in the most widely used
event-model, and propogating these uncertainties through to the predicﬁions.
For the present, the guestion of model uncertainties in these predictiéns
seems beyond analytical treatment, and is not incorporated in the reliébility
caléulations. It must be strongly emphasized that the historical record
of empirical verification necessary to quantify such inductive uncertainties
is almost wholly missing in the case of cyclic effects on sediments under
wave loading. Therefore, the conclusions here are at most lower bound$
on the actual uncertainty in predicting foundation behavior under thesé

conditions and must be considered tentative.

3.4.1 Pore Pressure Development

Typical results of constant volume cyclic direct shear tests on
saturated dense sands are shown in Figure 5.37. Starting from an initial
effective consolidation stress GS' the shear stress 1 is cycled positiﬁely
and negatively about zero and resulting deformations and pére pressureg
recorded. With each cycle of loading the pore pressure increases incre-
mentally as the sand grains reorder themselves, and the deformation of:the

sample increases. Empirically, the increments of pore pressure increase
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are approximately constant with increasing numbers of cycles, leading:
eventually to very large deformations of the sample and failure.
The incremental increase of pore pressures per cycle normalized by

the consolidation pressure is defined as

g, = &% (5.75)

and assumed constant over N. The exponential dependence of Bu on the
magnitude of the cycled shear stress 1/00; is shown in Pigure 5.38 the
higher Bu's-corresponding to virgin samples, and lower Bu's correspondéng
to samples previously experiencing shear stress cycling.

A number of factors affect this generation of pore pressure (e.g;,
Castro, 1969}, and laboratory testing itself is subject to systematic
errors (e.g., as noted by Casagrande, 1971, 1980 a redistribution of wéter
content occurs in the sample causing misleading results). Recently
Hedberg (1978) and Finn, et al., (1979) have shown the effect of
cycling shear stressess about stress states other than t = 0, such as
point B in Figure 5.37. For the present analyses, however, the assumppion
is made that pore pressure generation is linear in number of cycles ana

log-linear in cycled shear stress magnitude, and that only the value of

is i uestion.
BU,T s in q

5.4.2 Single Storms

The basic model with which pore pressure development bheneath a
structure is predicted is the analogue to the Palmgren-Miner formula iﬁ
fatique studies. That is, increments of pore pressure development are

assumed independent and additive with magnitude proportional to the Bu
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of the respective individual wave t. Thus, for a time streams of wave

heights H H_ inducing shear stresses T ,...,Tu the total pore

1770 Ty 1

pressure increase in the foundation sediments is taken as

bu= 28,0 ° | | (5.76)
i

To predict Au for a particular stérm, and therefore the reduction
in foundation strength, all that needs be known in addition to Bu,Tc
is the distribution of wave heights and number of waves. From Section
3.1.2 the distribution of wave heights given the sea-state parameter Hc
has a Rayleigh form. i

The number of waves in a storm depends on the duration of the storm,
D, and the period of the waves, T, through the joint distribution f(D,T hc).
Assuming that pore pressures dissipate between storms and that Au reduce
with exposure to storms, only severe storms with large Hc are of interesﬁ.
Few data have unfortunately been analyzed on storm duration. As discuss?d
in Section 3, extreme storm occurrence seems well modelled as a Poisson
process {Russel and Schuéller, 1971), and Houmb (1971} has suggested con
this basis that duration may be exponentially distributed. Latter analyses,
however (Houmb and Vik, 1977) seem to support more a Weibull distributioﬁ
of duration for a given sea state Hc' with exponents in the range of 0.5
to 0.8 depending on Hc (Figure 5.39). No empirical work on dependgnce
between T and Hc was found, and in subsequent analyses the relationship
is taken as iﬁdependent except through dependence of the joint pdf of

{T,H) on Hc' Build-up and degradation of the storm (Figure 5.40) is ignored.

Also, given the large number of waves in a storm {i.e., thousands for a
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long lasting storm on Georges Bank) the dispersion of total number abouﬁ
its mean, due to variations in wave period, is very small and ignored.
Thus, for a storm of given duration and characteristic wave

height the build-up of pore pressure beneath the foundation is

fu DY cmyEm EyaE (5.81)
T o c

where T is the average wave period, T{H) the loading transfer function,
and f(H|HC) the distribution of wave height. Substituting Morrison's
equation for Tt (H) and the dependence of Bu T on H of Figure 5.38, and

r

then integrating with respect to H gives

Au - 2Da (5.82)
' btH I
% T(2 - —=—)
g
o

where Bu . a exp(bT/UoJ. For the Georges Bank test case this becomes

r

S Au 2D{1.7x10 ")
.l . i __4 4_2". (5;79)
o T{2=-2.2x16 H
Q c

For a randomly occurring storm D and Hc are dependent Weibull
distributed variables, and therefore an analytical transformation into
a pdf on Au/o;' is difficult. Springer (1979) has presented a solution for
independent Weibull variables, but this is inapplicable to the present

case. Therefore a first-order second-moment approach was used to
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calculate means and variances for pore pressure build-up. For a randoﬁly

occurring storm this yields:

E(Au/oo ) 0.10

1

V(bu/oo )

0.0009

for the statistical descriptions of duration and charadteristic wave height at
the Georges Bank site, and for the case of simple shear sliding of the

foundation.

5.4.3 Recurrence Relations
Making the arbitrary assumptioh that pore pressuré build up is

itself logNormally distributed, moment estimation leads;to
L}
f(Au/oo } v~ A{-2.56, 0.77)

. . : ' «1
with a Poisson frequency of occurrence of A = 0.4 yr ~, annual exceed-

ance probabilities are shown in Figure 5.41.

5.4.4 Pailure Probabilities

To relate pore pressure build-up to increased probabilities of
failure the joint distribution of maximum wave height Hm and pore preséure
change Au/Ob' must be considered in conjunction with some failure criter-
ion relating Hm and /0 to performance.

The simplest way to do this is simply to assume a design storm in

which, say, the 100-yr. wave height cccurs near the end,
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At this point the pore pressures are the highest and reliability can be
calculated by adding.this uncertain pore pressure to the models of
Sections 5.2 and 5.3. Obviously, Hm and Aﬁ/oo' commonly depénd on Hc and
D, and thus should not be treated as independent, but this ihtrodﬁces few
problems.

A more realistic treatment and lesg ¢onservative assumption is to
assume that Hm can occur at anytime throughouf the storm. Tﬂ?s the ex-
pected Au/co' at the point when Hm occurs will be on the order of half
that at the end of the storm.

In the present work no attempts were made to perform such analysés,
as the basic mechanisms of pore pressure development under cyélic loading
are poorly understood, and the intent of this direction of investigation

was primarily to evaluate the magnitude of uncertainty internal to the

current method.

5.5 Uncertainty in Predicted Performance

From the above discussions only conclusions on uncertainties in
predictions of dynamic performance derive in large measure from limited
mechanistic¢c understanding and to that extent have not been treated here.

For well known bottom conditions and sediment parameters, the cov
of predictions of limiting equilibrium stability under static design loads
is estimated to be about 30%. Typical uncertainty about sediment param-
eters increases this COV to 60 - 70%. The COV of predictions of total
settlement with well known sediment properties is thought to be about 40%,
rising to 60% with parameter uncertainty. Respective COV's for differ-

ential settlement are thought to be about 30 and 50%.
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6. RISK ANALYSIS

In treating uncertainties of loading and response formally, the
question ultimately.arises of how they should be aggregated into ovérall
risk and what the risks are. While this would be the ultimate goaliof
risk and reliability analysis, it is rarely reached. This section aédresscs
current approaches to risk analysis of the geotechnical performancefof
of fshore structures, and what such analyses lead to. The conclusioﬁ of
this section is that, while much attention has been addressed to geé—
technical risk analysis, the difficulties still to be faced are gre;t.
More limited goals than complete risk characterization must be acceéted
if the benefits of such analyses are to be realized.

The following subsections treat in turn the uses and categoriés of
risk analysis, its theoretical structure, the question of aggregatiﬁg
uncertainties into system performance, and finally attempt to definé a

role for risk analysis in offshore design.

6.1 Uses and Categories of Risk Aﬁalysis
Current views on risk analysis for civil works can be broadly'
grouped in three categories. It is seen alternatively as: |
1. A formal procedure with which to aggregate risks defined with
respect to some ohjective function, ultimately to allow as
optimization of design and consﬁruction decisions.
2. Aﬁ analytical proceduré to allow relqtive comparisons of uﬁ—
certainties from different sources and in modes of behavior,
and to allow their propagation through engineerjng calcula-

tions to assess cumulative effects,
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3. A set of models for studying individual modes of performance
to estimate from data analysis and theoretical reasoning thé
reliaﬁility of each separate component a subsystem. :

As Reviewed in Section 2, most current applications are of the third

variety. The present study is an attempt to move toward the second. ;With

few exceptions {e.g., Fjeld, et al., 1978; Moan 1979), none of which deal
primarily with structural or foundation performance, no comprehensive:
risk analyses of the first type have appeared. At current levels of
mechanical understanding of geotechnical behavior and based on the cufrent
empirical record, such comprehensive analyses do not seem possible or:

even desirable. This point is taken up further in Section 6.5.

In contrast to these views are the needs of various clients of ?isk
analysis, which have forced applications into areas for which the models
are poorly suited or inappropriate. The most congruent needs are those
of the designer, primarily concerned with the magnitude of uncertainties
in input parameters and how uncertainties propagate through engineeriﬁg
calculations. Less congruent are the neéds of the owner and insuring.
consortium, wanting quantified predictions of frequencies of failures and
associated costs. These approach what analysis can.in fact provide, in
considering how design changes marginally reduce probabilities or conse-
quences. Finally and perhaps least congruent are the pegds of government
requlators, carrying the public trust of ensuring that the probabilities
and consequences of accidents causing harm to the environmental, social,
and financial well being of the public are acceptably low. These latter
needs require the comprehensive analysis of type 1 above, extended to;

include detailed prediction of multiattributed consequences of adverse
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performance (e.q., pollution, cost, injury or death, loss of use).

In defining a role for risk analysis in offshore engineering there
must be basic critegia against which it is to be judged. These have:to
do with its relevance to decisions, its integrity, and ité validity
(Latai, 1977):

1. It should be a practical tool; as such, it should answer

questions that are reievant and important.

2. It must be based on a clear statement of the questions to be
answered and the risks toc be analyzed. It must reflect a ?ro—
found understanding of the system being analyzed.

3. Itmust itself be reliable, in that independent groups of
analysts should reach approximately the same conclusions when
using the same method.

Most current risk analyses only partially satisfy these requirements.

6.2 Structure of Risk Analysis

This section reviews the general organization of risk analysis;
focusing on the components and their interrelationships.

" Risk may be defined in a general way as a vector p= {pl, . us pn}
of probabilities of occurrence of adverse behaviors in n limiting states
or modes, and an associated vector ¢ = {cl, vay cn} of consequences con-
ditioned on the occurrence of one or more of the limiting states. The
components of p  and ¢ are not necessarily independent, and the com-
ponents of ¢ may be multiattributed (i.e., themselves vectors). To

simplify analysis this vector pair is usually replaced by a summary measure,

the most common of which are a marginal pdf on consequence cost and the
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product of probability and consequence summed over the limiting states
(i.e., expected consequences). For the latter, a non-linear objectivé
function in the sensé of cardinal utility {e.g., Keeney and Raiffa, 1§76)
is sometimes introduced to incorporate risk aversion. For_the present
work risk is taken to be the ﬁroduct of probability and consequence,
whether taken directly or transformed into utility; This is in keepiﬁg
with the civil engineering literature, but differs from usage in, e.q.,
insurance {B#hlman, 1970) and environmental safety {(Lowrance, 1975). |
The paradigm of risk analysis is shown in Figure 6.1, around thq
three fully enumerated spaces which compose its basis: a space of
design alternatives D, states of nature 2, and limiting states X. X is
an uncertain mapping from U x , and has an objective function u(x) .
defined over it. The important thing to note is that the spaces must
be fully enumerated. Any limiting state, state of nature, or consequehce
not specified cannot be included in a risk amalysis. Since it is never
possible to do this, risk analyses are necessarily incomplete. :
The uncertainties leading to risk enter in the transformation frém
D x 2 to X, and in uncertainty about 2 itself, specified as a probability
distribution over the elements © é @, £(9). This latter uncertainty can
be reduced by gathering information, which in the familiar Bayesian
procedure enters through a likelihood functior L(zle) on the informatibn
z, multiplied by a prior distribution fote), to give an updated posterjor
distribution f'(e|z). For the present purpose, £(8) is said to represent
statistical uncerfainty, and f(chlaeD, Be?) to result from reliabilitg
analysis. The data z may be from site characterization studies, material
testing, hydrographic measurements, or the like, and the function L(z[e)

is the model through which the data are interpreted.
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Beyond the obvious division inte (P, @, X), models enter the risk

analysis paradigm in four places:
o L(z|e; -~ model for interpreting data,
o fix|a,6) - reliability model,
L f°(e} —- model for summarizing initial information,
® u{x) -~ model of preferences for consequences.

Each of these is an abstraction, introducing assumptions, amplifica—
tions, and inaccuracies; but even more importantly, defining the
questions to be analyzed.

The paradigm of risk analysis is a logical structure which proceéds
from assumptions to conclusions narrowly, clearly, and indisputabiy.

The analysis is internally either right or wrong by clearly épecified
rules of mathematical logic. The purpose of this paradigm is to allow%a
complicated problem to be decomposed into simpler ones, each of which can
be dealt with in isolation, and then recombined according to fixed rules
to deduce a conclusion. This forcés internal consistency among prior
information, cobservations, predictions, preferences, and design decisiqns;
but the analysis itself is only ig;ernal@x_objective. |

In its entirety, risk analysis is subjective. It is ciear, open;
and internally consistent; but it is not objective. Importént judgmen£s
must be made in enumerating the sets P, &, and X; in specifying u{x), énd

£2(8); and in modeling L(z[8) and f(x|a,8). All of these tasks are

inductive.
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6.3 System Failure Probabilities

The analyses of Sections 2, 3, and 4 have dealt with specific modes
of failure and theif respective marginal probabilities. If the goaliof
guantifying overall risk is to be reached, these individual probabilities
must be aggregated into a system probability of failure or probability
distribution over the spectrum of potential consequences. This is méde
difficult by two considerations. First, various modes of failure share
common input random variables or arxe functions of distinct but corre%ated
random variables. Second, the sequence of occurrence of events may
influence the occurrence of modes of failure and this introduce dependencies
among the modes themselves. The reliability of a"geotechnical system" is
less difficult to deal with than that of structural systems, because it
depends on fewer distinct elements and fewer identifiable sources oﬁ
uncertainty {primarily a manifestation of the less sophisticated mddel-

ling in geotechnical practice),

At present, there are two general procedures for analyzing the
reliability of “geotechnical systems." The first is fault and event free
methods and the other is here called basic variable-space method. Fault
and event free methods have entered geotechnical engineering via nuclear
safety studies and traditional reliability theory (e.g., Barlow, et 9_1_
1976), while basic-variable-space methods have entered via recent work
in structural reliability {Rachwitz, 1976), The twe methods treat so@e—
what different prﬁblems and are therefore nct interchangeable. However,

each hag important applications in geotechnical analyses.
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6.3.1 Fault and Event Tree Analysis

Fault and event trees are analytical techniques for estimating thé
reliability of éomplex systems by decomposing them into components,
assessing the reliability of each, and fitting the assessments back together.
These methods have become a mainstay of present reliability and risk
analysis.

Both fault and event tree techniques use a tree structure to desc#ibe
the interrelations among components of a system being analyzed. Fault
trees start with a particular undesired final event {e.g., "complete loss
of platform usefulness through structural collapse™) and work backward to
enumerate all possible ways the final event could occur (Figure 6.2).-
Event trees start from some initiating event (e.g., “scour action unde?-
mines skirt") and project all possible successive events following fromf
it (Figurxe 6.3). In principle, the two techniques are quite similar.

To determine the probability of an undesired final event, whether
from the fault or event tree, the conditional probabilities of faults of
events within a chain leading to the final event are multiplied together,
and then those fram different chains leading to the same final event areL
added. For computational reasons these fault or event prcobabilities aré
usually assumed mutually independent and dichotomous although in princi?le
they need not be. These are inappropriate assumptions in the geotechniéal
case, where failure modes can interact and processes vary over continuoﬁs
rather than discrete domains.

The majbr ¢riticisms of fault/event tree analysis are that:

1. Things are left out: For example, grose human error, unantici-

pated events, poorly understood physical mechanisms.
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2. Changes_in the use or environment of the structure are

not anticipated: For example, changes in platform loads,

3. MCommon mode" failures in which redundant components have

correlated failure probabilities are overlooked: For

example, several members in & tower may all be fabricated
out of the same defectiwve batch of steel or concrete,
or high currents may increase lateral loads while at the

same time scouring the foundation.

4. Time is absent: Por example, the sequence of events or

faults may influence both probabilities and consequences,

but is not considered.

While the.criticisms above apply to the general use of fault/event'
trees, difficulties more specific to geotechnical problems are also impor-
ant. The first is that modes of failure interapt with one another in ways
that are difficult to account for in £/e trees. Figure 6.4 illustrates |
interaction between differential settlement and bearing capacity. Large
differential settlements change the stress distribution along the platform
foundation and thereby increase the probability of local bearing capacitf
failure. At the same time, local bearing capacity faillure increases the
probability of excessive differential settlements. These c¢ross influences
are generally omitted in f/e trees (also from most deterministic analyses).

The second is that the physical faults or events may themselves be
interrelated in complex ways. For example, for bottom sediments of moder-
ate or low permeability pore pressures are sensitive to the rate of loading.
Thus, loads and resistances may be highly correlated. The simple dichotomies

of f/e tree analysis do not capture the complexity of these interactions.
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Figure 8.4 -~ Interdependence of deformation and
stability faillure modes. Initial differemtial dis-
placement leads to nonuniform pressure distribution
which leads to local shearing which leads to further
differential displacement. ,
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The third is that geotechnical performance is usually sensitive to
peculiarities of construction or placement, and designs are often modified
during construdtion in response to initial behavior of the structure aﬁd
foundation. Although in prineciple f/e tree analysis could encompass
these facts of the problem, the first type are subtle or unknown, and the

second usually occur after the risk analyses are complete.

6.3.2 Basic Variable Space Methods

The second method for assessing system reliability is to perform
analyses directly in a space defined by the basic uncertain variables, and
to specify domains within that space for which the system has exceeded
one or more limiting states. Then the probability of reaching a limiting
state can be calculated from the probability content of the distributiqn
function of the basic variables outside the safe domain. In ﬁrinciple,i
this technique can be applied no matter how complex or numerous the baéic
variables and no matter how complicated their ihteractions. In practice,
computation requirements limit the applicability of the technique, and:it
is easily used in geotechnical problems only due to the comparitive
simplicity of geotechnical models and theilr limited numbers of parametérs.

Figure 6.5 shows the simple case of limiting equilibrium stability
of an unembedded foundation on cohesionless sediments with combined and
uncertain vertical and horizontal loading. From Section 5.2 an uncertain
boundary is calculated separating combinations of horizontal and vertical
load leading to instability from those leading to stability. Then the
probability of failure is calculated from the volume of the joint densi#y
function on H,V outside either of the failure boundaries. Because the

boundaries themselves are uncertain, reflecting modeling error, a series
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of conditional probabilities of failure are calculated and combined by the
marginal distribution of the boundary locations.*

From a second-moment-point of view a reliability index B can be
defined by measuring the distanc¢e from the joint expected value of (H, Vj
to the nearest point on the failure boundaries and normalizing this dis-
tance by the standard deviations of the variables. Operaticnally this i$
done by rotating the reference to align with the Eigenvectors of the co-.
variance matrix I of (H, V), and renormalizing each axis by the resulting
standard deviations of the transformed wvariables, Then the linear dis-
tance to the nearest point on the transformed failure boundaries is the
reliability index B (Rachwitz, 1976)., The rotation leads to a new set
of uncertain variables that are mutually.independent; the no?malization
to a set with equal variances. The result is a joint density function
whose density contours define concentric (hyper) spheres. Thus, linear
distances measure standard deviation units directly. 1In principle this
procedure can be performed in any dimensions as long as.the failure
boundaries can be transformed. Computationally, a search algorithm is used
in higher dimensions to find the nearest pdint on thg transformed boundaries
(Rachwitz & Fiesler, 1977).

For geotechnical applications, the main advantages of basic variable
space methods over fault and event trees is that they allow easier treatQ
ment of continuous variables, and that they allow clear recognition of
correlations among failure modes. The major disadvantages are first that
computationai prpblems are encountered as the dimension of the basic variable
*An analytigally gimpler although computationally mere difficult way to
analyze this problem is to expand the basic variable space to comprise tbe
variables leading to model uncertainty (i.e., N , E , I , 8, of Section 5.2),
so that in the expanded space the failure bounddried ard deterministic. _
Then the probability of failure is defined by the probability content of the

joint distribution function f(H, V, N_, E_, I_, ¢) outside either of these
boundaries, Y Y Y
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space increases, and that thetefore most basic variable space analyses are
based on a reliaﬁility index measuring only the closest distance from the
mean of the basic vﬁriables to any of the failure boundaries. This carries
no information on probability contributions from other modes of failu%e.
Secondly, spatially varying properties, like bottom parameters, are approx-
imated by random variables in the analyses, leading to numerical errofs.
Not unexpectedly, the major objections to f/e tree analyses also can 5e
directed at state space techniques: things are left out, changes are not
anticipated, time is absent, and modes of failure may not be physically
independent of one another,

The most important contribution of state space techniques seems not
to be in evaluating overall system failure probaﬁilities, but in evaluating
the various ways in which individual types of failures can occur -- eﬁg.,
stability failures of various sorts -- and the way basic uncertaintieé
combine to lead to failures. Probabilities estimated in this way may
then be further incorporated in f/e tree analyses or other methods of

reliability assessment.

6.4 Sources of Uncertainty and Offshore Reliability

From the initial discussion of uncertainties in Section 2 and suh-
sequent enumerations leading to summaries like that of Figure 6.3, the
principal sources of uncertainty underlying the geotechnical performanCe
of offshore structures are given in Table 6.1. Unsurprisingly, these
are divided into four major groups: uncertainties having to do with
environmental loads, bottom conditions, geoméchanical models, and omissions

or engineering errors. Throughout this work the fourth of these categories
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Table 6.1 —- Principai sources of unctertainty in predictions
of geotechnical performance of offshore gravity structures.

Environmental loads

Wave loads
Earthguake loads
Wind Loads
Current loads

Extraordinary loads

Load transfer to structure

Boettom conditions

Modeling

Omissions

Strength parameters --
Deformation properties

Anomalous details

Stability -- static
beformations -~ static

dynamic response

Gross errors

drained, undrained

Theoretical uncertainty
Boundary and initial conditions
Structural relations

Omissions
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has been neglected, even thouéh in practice it may be an important contri-
butor to the overall frequency of structural or foundation failure (;.g.,
Flint and Baker, 1976; Yam, et al., 1980). |

From a risk analysis point of view, the interesting thing about these
uncertainties is 1) their high implicit correlation, and 2) their combined
effect yielding high interdependence of failure modes. The result is
that failure through various modes of behavior are both rhysically ang
statistically correlated. addition of failure mode probabilities indé—
pendently can greatly over estimate system failure probabilities. Fufther-
more, because egtimates of bottom coﬁditions from measurements, predictions
of behavior through geomechanical models, and other aspects of designi
share common assumptions, calibrating data, and othex sometimes Subtlé
influences, the analytical combination of these uncertainties under aé
assumption of independence can strongly bias systems failure probability
estimates. . |

In the present work a Georges Bank site has been used .
as an example application. Results of the generic anélyseé are shown in
Table 6.2, in which the total variance in the predictions of performaﬁce

are divided by component contributions of the general classes: envirdn-

mental loads, bottom conditions, and models.
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Table 6.2 =-- Approximate reliability indices and vartiance
conponents for the gemeric analyeis of the Georges Bank site

VARIANCE CONTRIBUTIONS %

MODE OF FAILURE : B loads bottom model
: 100 yr. :

Stability--static

bearing capacity 2.4 1.0 25 74
sliding 17 76 10 Il4
Stability--dynamic 1.8§ -- - -—
Excesgive Settlement (0.6}+ i3 25 542

Differential Settlement (0.5) 33 25 42

§ Based only on static case with pore pressure development.

+ COV's: B values are a Function of criterion of excessive
total or differential settlement D
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6.5 fThe Role of Risk Analysis for Offshore Structures

At present levels of technical capability comprehensive risk anélyses
leading to overall design optimization are not possible. Attempts to.produce
such analyses meet with at least three obstacles: inadeqﬁ&te mechaniétic
understanding of important failure modes, importance of a priori
unidentified (perhaps ﬁnidentifiable) geclogical or construction details,
and complex interdependence of failure modes. Further, given large sta-
tistical uncertainties and modeling errors, calculations lead to nomiﬁal
probabilities of failures which do not correspond to realized frequenéies.

The purpose of any engineering analysis is to contribute to efficient
design, in which the frequency and consequences of failures are balancded
against design, construction, and operational costs. Risk and reliability
analyses, if seen in a more modest role than complete rationalization of
uncertainty, in fact seem to offer this contribution if used appropriately.
The purpose of their use is not to quantify uncertainty but to lead tq
better design. They do this by allowing complicated problems to be
decomposed into simpler ones, which can be directly treated and recombined
in a logically consistent way.

At present, the primary roles for (geotechnical) risk analyses of

offshore structures seems to be,

1. Statistical analysis of site characterization data and the
planning of site investigation p:ograms; This is an area of
application for which well developed mathematical results are
available, in which many (but not all) guestions are well
posed, and which to date has benefitted little from techniqubs

and procedures in routine use in other branches of engineering.
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2. Uncertainty analysis of individual failure modes (limiting
states) and the balancing of cost against changes in reliability
indiceg. Even though reliability analyses lead only to nominal
probabilities, because most objective functions are linear with
respect to probabilities of failure (e.g., expected utility)
partial optimization is possible. Further, for most engineeriné
analyses estimates of uncertainties up to second moments are noﬁ
possible and at least the variances of parameter estimates,
loads, and modeling errors should be propagated through calcula=
tions to establish variances of predictions. Again, this prac-

tice is common in many branches of engineering.

3. The identification of individual and compound sources of uncer~:
tainty to which uncertainties in predicted performances are mosﬁ
sensitive. This is an exploratory type of analysis that allows.
site investigation and analytical studies to be improved, whethér
or not formal risk analysis is used in making design decisions.
Risk analyses allow significant improvement over traditional
sensitivity studies in that important dependencies among
uncertainties, correlations of failure modes, and the cost of

reducing uncertainty can be combined and incorporated.

Promises of comprehensive risk analysis now appearing in the litera-
ture and being made at conferences appear misdirected, in that they will
only lead to a failure of expectations by the practicing profession and
to a rejection of analytical techniques that, while not truly comprehen-

sive, do offer substantial improvements to practice. A change of
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direction of current efforts toward implementation and the development

and testing of practical tools of risk analysis would seem the best pdlicy

at present.
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7. CONCLUSIONS

Three principle conclusions have been drawn.froﬁ the presenﬁ atte@pt
to quantify geotechnical risks in offshore structureé.

First, comprehensive analyses of geotechnical uncertainties and tﬁe
risks these uncertainties lead to through imprecise or inaccuréte pre-
diction of engineering performance is not now possible in the sense of
arriving at aggregate probabilities of levels of adverse perfoxrmance thét
may reasonably be expected to reflect realized frequencies. This does
not mean that attempts are risk analysis or that a reliability-based
approach to geotechnical analysis carry no benefit. Certain categories'of
uncertainty and prediction can be rationally treated through reliability
methods even though comprehensive analyses are not possible. Central
uncertainties in offshore design stem from ignorance rather than natural
randomness, and the statistical or probabilistic statements made about
them can only be interpreted in this way.

Second, for those categories of performance about which physical
understanding is good, model and statistical parameter uncertainties
appear to he of about equal importance to overall uncertainty. Further,
the deminance sometimes attributed to uncertainties in wave loading is

not supported by the present study.

Third, for those aspects of geotechnical performance about which
physical understanding is good and for which reasonably validated models
exist, (first order)} reliability indices against major adverse performahce

{loss of stability, severe deformation) appear to be of the order 2 to 3.
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This would correspond to annual probabilities in the range 10f4 - to
10'5, - which appear'lower than the sparce historical record (for pile.
supported platforms) would suggest.

In general, the development of quantified procedures for handling
geotechnical uncertainties has advanced rapidly in recent years.
Nevertheless, the proﬁises of many proponents of such methods of complete
rationalization of uncertainty seem unattainable in light of the sub-
jective nature of many uncertainties and the inadequacy of present undér-
standing of spécific aspects of soil behavior. The potential contribuéion
of quantified procedures for assessing uncertainties and incorporating
them in analyses seems great, as long as their role within the overall.
issue of design and safety is not exaggerated. The most urgently needed

work at present is to verify such methods in application to actual cases.
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